Десятичные и натуральные логарифмы

Цель урока:

Формирование знаний по теме «Десятичные и натуральные логарифмы»

Задачи урока:

- 1. Изучить понятие десятичного логарифма
- 2. Изучить понятие натурального логарифма
- 3. Рассмотреть свойства натурального логарифма
- 4. Изучить формулу перехода к новому основанию и закрепить ее

Заполните пропуски:

$$Log_xb + Log_xa = Log_x(ba)$$

$$Log_x a - Log_x b = Log_x (a/b)$$

$$Log_x b^p = pLog_x (b)$$

Десятичным логарифмом

называется логарифм по основанию 10. Обозначается lg a

Десятичный логарифм чисел 0,1, 0,01, 0,001 равен соответственно -1, -2,-3, т.е. имеют столько отрицательных единиц сколько нулей стоит перед единицей, считая и ноль целых.

Десятичные логарифмы $log_{10} a = lg a$

 $lg100 = 2, 10^2 = 100$ $lg 10 = 1, 10^1 = 10$ $lg1 = 0, 10^0 = 1$ $\log 0.1 = -1, \quad 10^{-1} = 0.1$ $lg 0,0001 = -5, 10^{-5} = 0,00001$

Вычислите:

Натуральным логарифмом называется логарифм по основанию е Обозначается ln a

$$\log_e a = \ln a$$

Число е является иррациональным, его приближённое значение 2.718281828. Значения натуральных логарифмов можно вычислить только приближенно

$$\ln e = 1, \quad e^{1} = e$$

$$\ln e^2 = 2$$
, $e^2 = e^2$

$$\ln \frac{1}{e} = -1, \quad e^{-1} = \frac{1}{e}$$

$$\log_e e = 1$$

$$\ln \sqrt{e} = \frac{1}{2}$$

$$\ln \sqrt[3]{e} = \frac{1}{3}$$

Свойства натурального логарифма

$$\ln 1 = 0
\ln e = 1
\ln(xy) = \ln x + \ln y
\ln \frac{x}{y} = \ln x - \ln y
\ln x^n = n \cdot \ln x$$

Didb=u0it

Формула перехода к новому основанию:

$$\log_a b = \frac{\log_c b}{\log_c a}$$

$$\log_a e = \frac{1}{\log_e a}$$

$$C$$
ледствие:1) $\log_a b = \frac{1}{\log_b a}$

Следствие: 2)
$$\log_{a^m} b^n = \frac{n}{m} \log_a b$$
.

Cледствие: 3) $\log_a b = \log_a b^{\gamma}$

• $\log_x a \cdot \log_a x = 1$, $x > 0, x \neq 1, a > 0, a \neq 1$

 $\log_{11} 3 \cdot \log_3 11 = 1$

$$\log_a b = \frac{\log_c b}{\log_c a}$$

Перейти к основанию 2:

$$\log_3 2 = \frac{\log_2 2}{\log_2 3} = \frac{1}{\log_2 3}$$

Перейти к основанию 2:

$$\log_5 4 = \frac{\log_2 4}{\log_2 5} = \frac{2}{\log_2 5}$$

$N_{2}305(1,2,3), N_{2}306(1)$

Итог урока:

- 1. Алимов Ш.А., Алгебра и начала математического анализа, Москва, Просвещение, 2017
- 2.https://nsportal.ru/shkola/algebra/library/2012/11/30/prezentatsi ya-svoystva-logarifmov