

Made by ALEX

P1 Chapter 6.1

«The Rule for Differentiation»

The Gradient of a Straight Line

The gradient of a straight line is given by

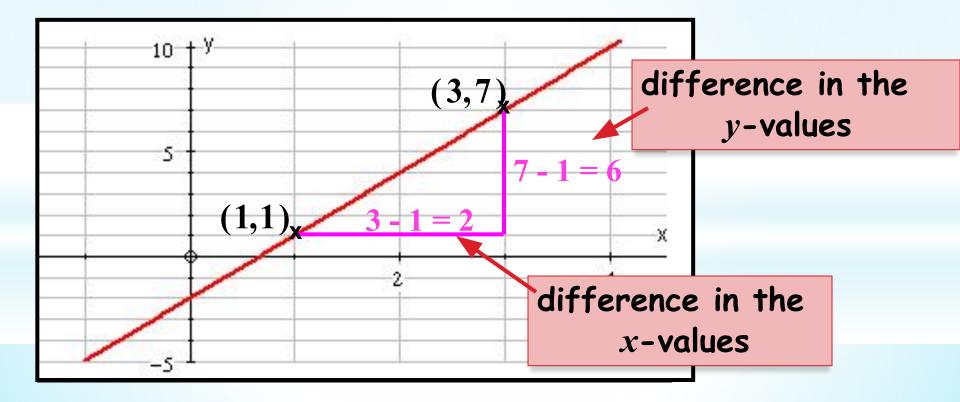
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

where (x_1, y_1) and (x_2, y_2) are points on the line

e.g. Find the gradient of the line joining the points with coordinates (1,1) and (3,7)

Solution:

$$\boxed{m = \frac{y_2 - y_1}{x_2 - x_1}} \implies m = \frac{7 - 1}{3 - 1} = \frac{6}{2} = 3$$



The gradient of a straight line is given by

 $m = \frac{\text{the difference in the } y - \text{values}}{\text{the difference in the } x - \text{values}}$

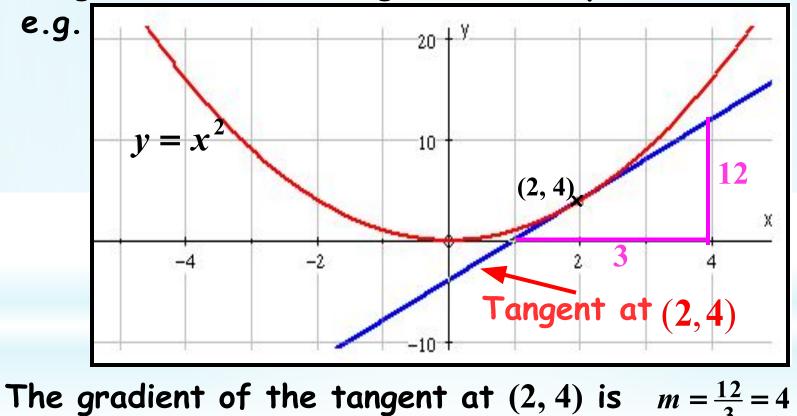
We use this idea to get the gradient at a point on a curve

Gradients are important as they measure the rate of change of one variable with another. For the graphs in this section, the gradient measures how y changes with x

This branch of Mathematics is called Calculus

The Gradient at a point on a Curve

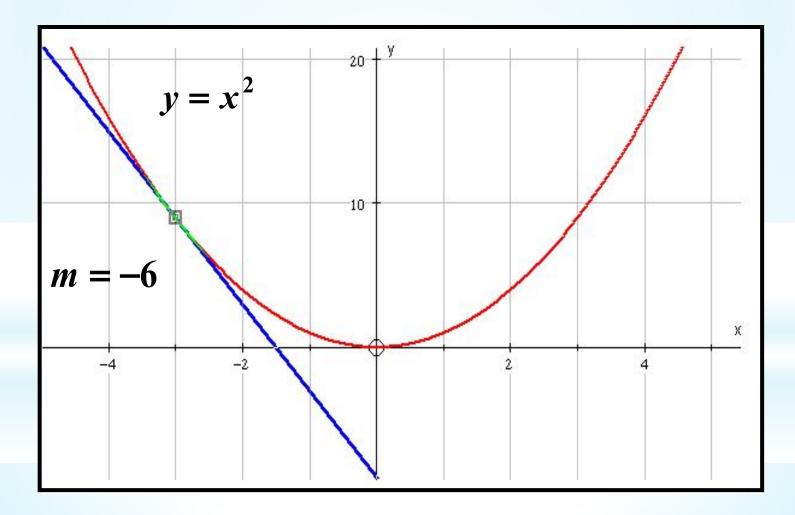
Definition: The gradient of a point on a curve equals the gradient of the tangent at that point.

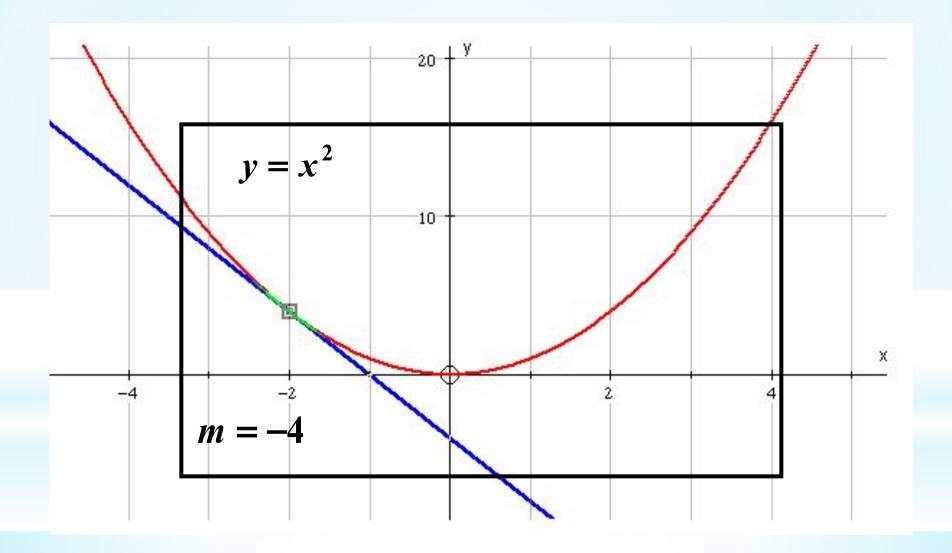


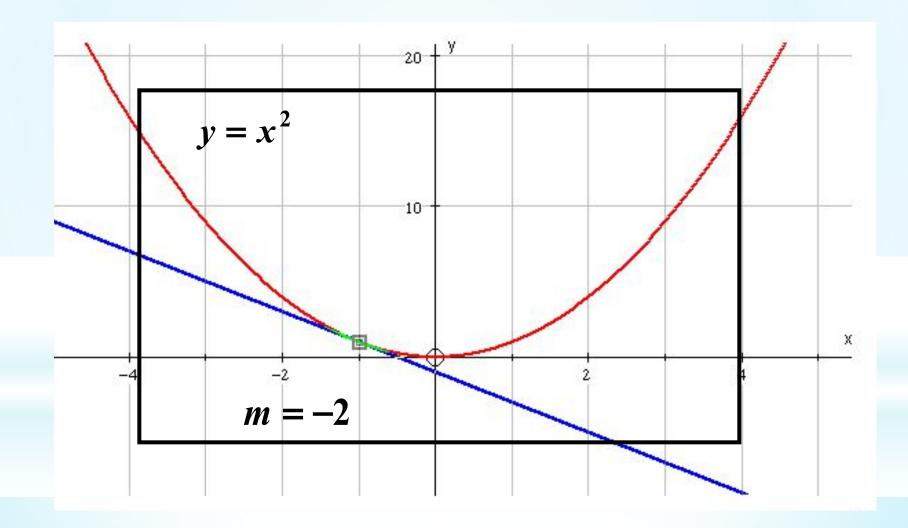
So, the gradient of the curve at (2, 4) is 4

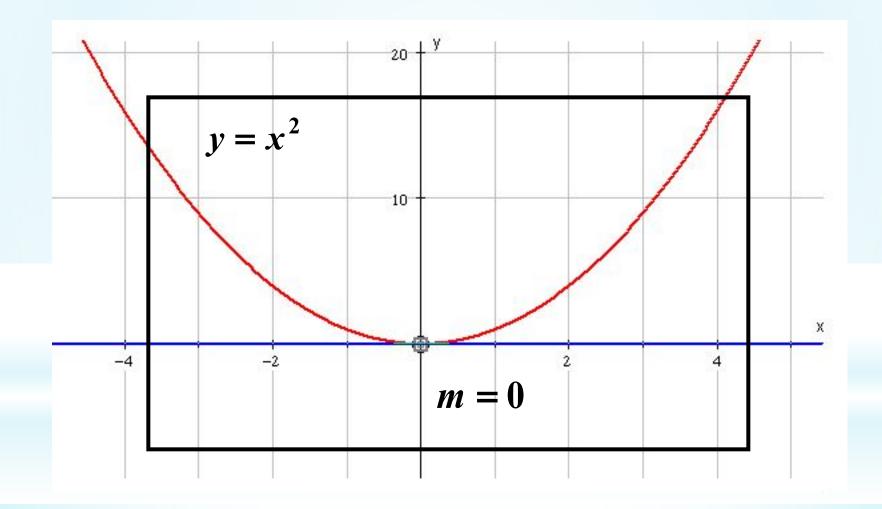
The gradient changes as we move along a curve

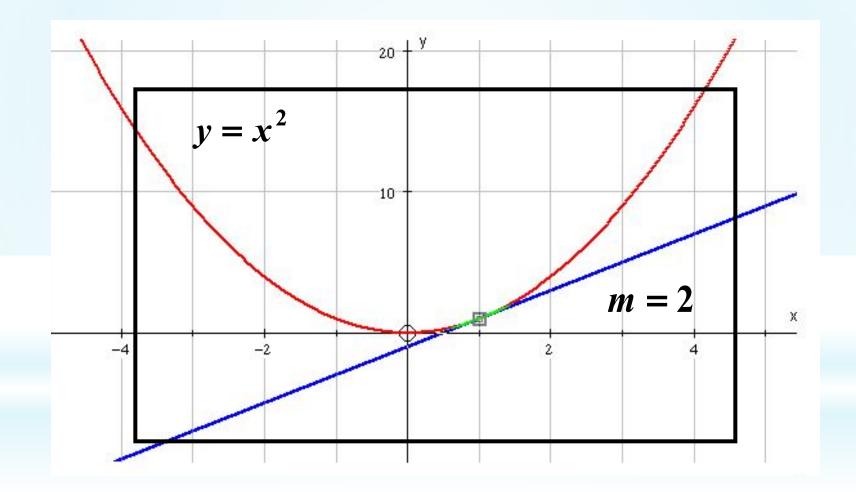
e.g.

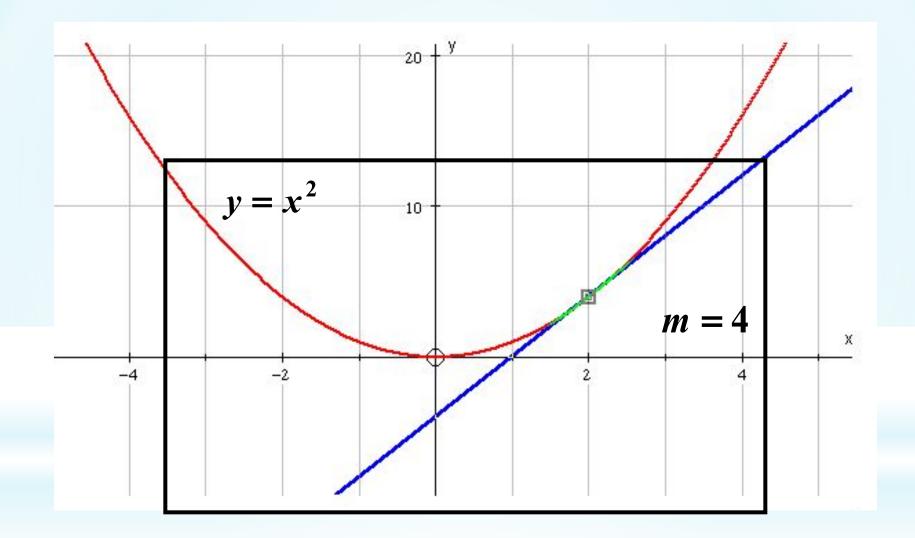


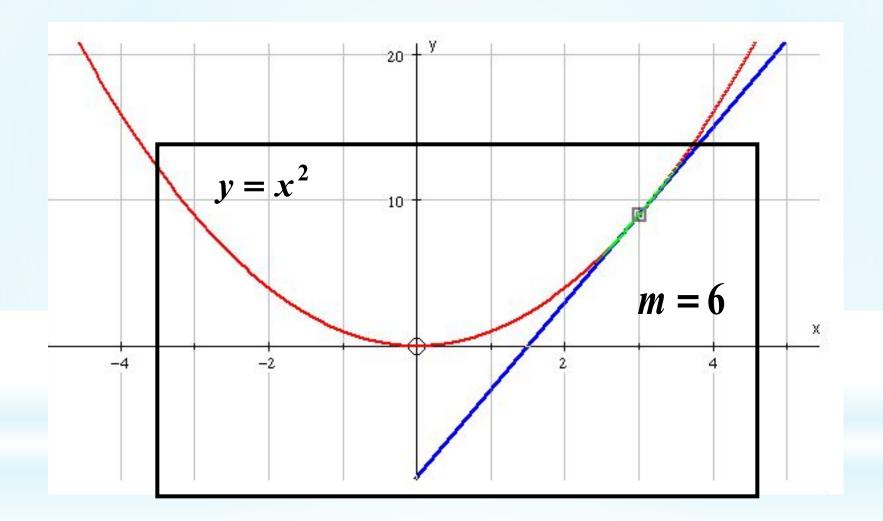












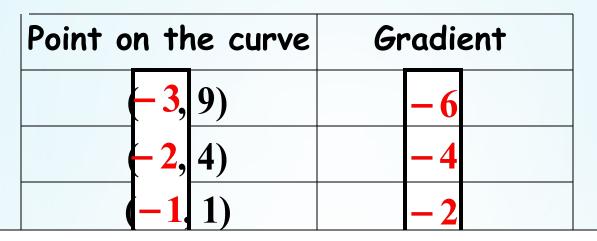
For the curve $y = x^2$ we have the following gradients:

Point on the curve	Gradient
(-3, 9)	-6
(-2, 4)	-4
(-1, 1)	-2

At every point, the gradient is twice the x-value

(1,1)	2
(2, 4)	4
(3, 9)	6

For the curve $y = x^2$ we have the following gradients:



At every point, the gradient is twice the x-value

(1,	1)	2	
(2,	4)	4	
(3,	9)	6	

At every point on $y = x^2$ the gradient is twice the x-value

This rule can be written as $\frac{dy}{dx} = 2x$

The notation comes from the idea of the gradient of a line being

the difference in the y -values

the difference in the x - values

At every point on $y = x^2$ the gradient is twice the x-value

This rule can be written as $\frac{dy}{dx} = 2x$

The notation comes from the idea of the gradient of a line being

the d ifference in the y -values

the d ifference in the x - values

$$\frac{dy}{dx}$$
 is read as " dy by dx"

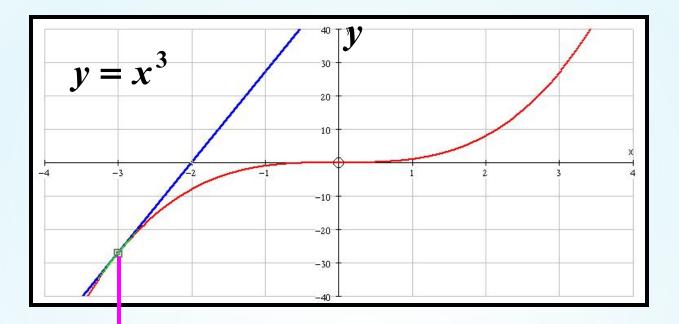
The function giving the gradient of a curve is called the gradient function

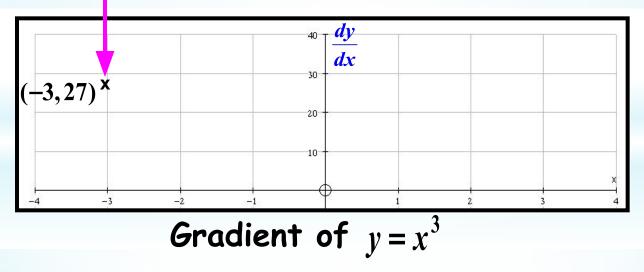
Other curves and their gradient functions

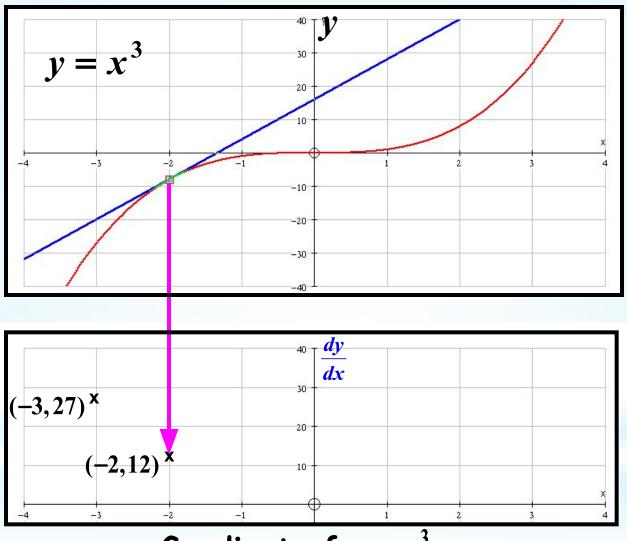
$$y = x^3 \implies \frac{dy}{dx} = 3x^2$$

The rule for the gradient function of a curve of the form $y = x^n$ is $\frac{dy}{dx} = nx^{n-1}$ \Box "power to the front and multiply" \Box "subtract 1 from the power"

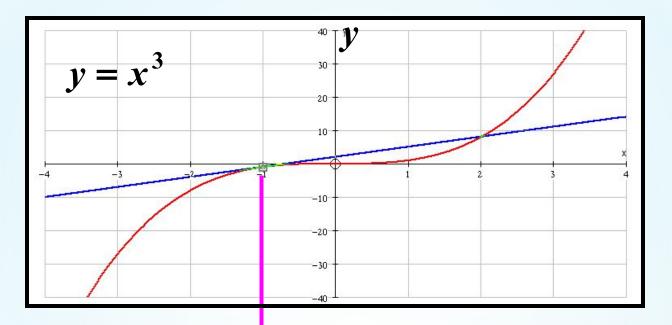
Although this rule won't be proved, we can illustrate it for $y = x^3$ by sketching the gradients at points on the curve

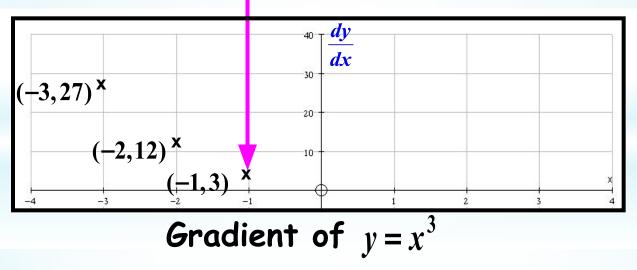


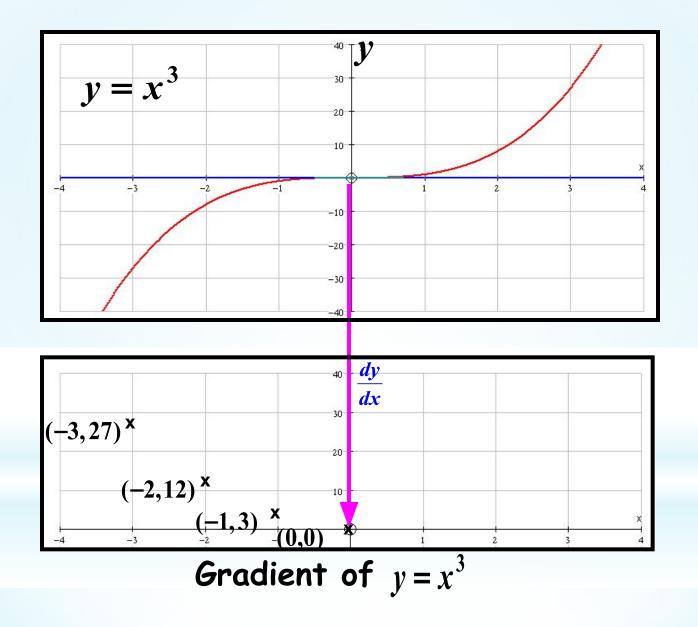


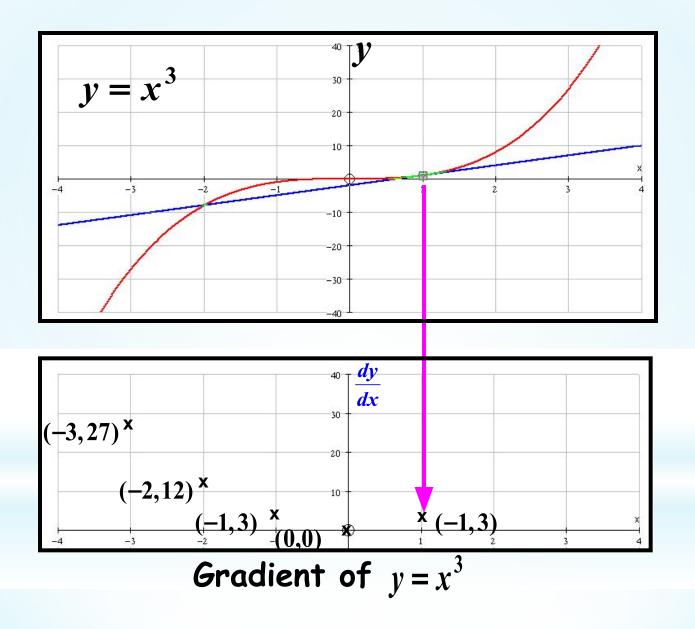


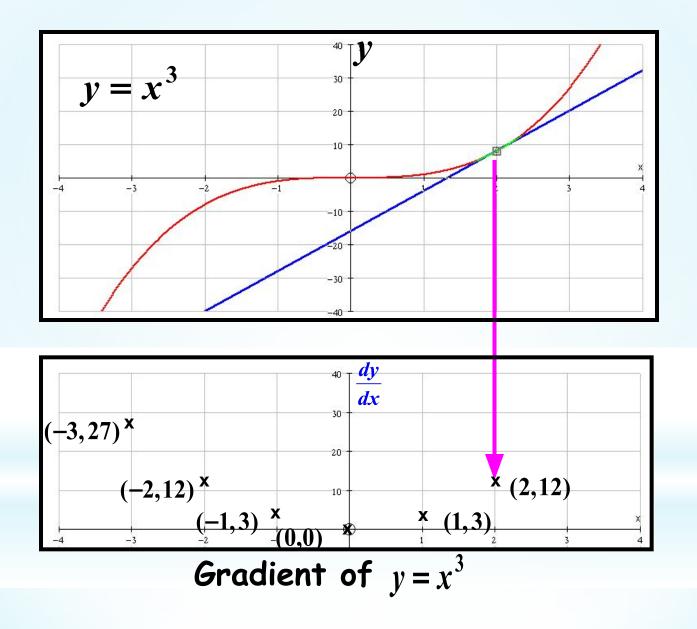
Gradient of $y = x^3$

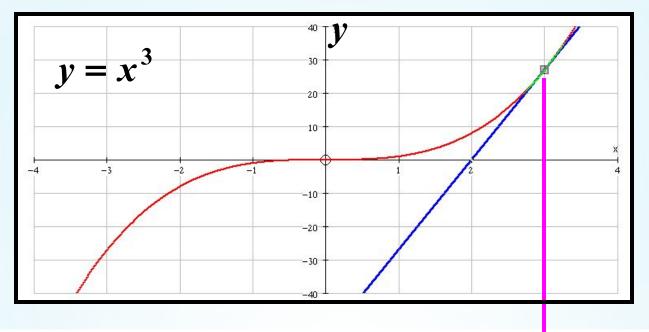


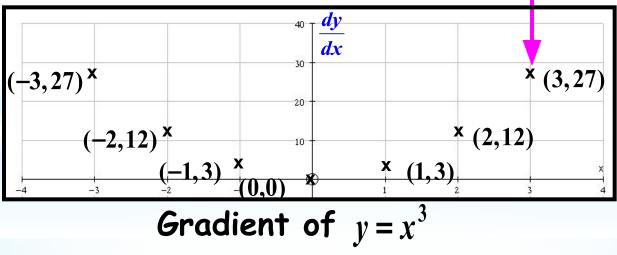


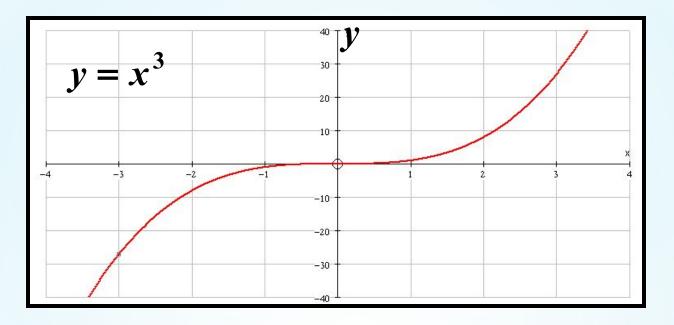


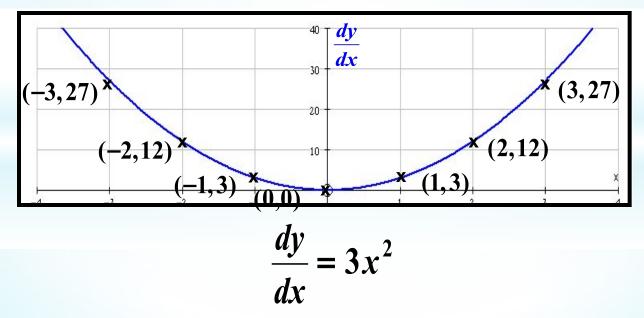




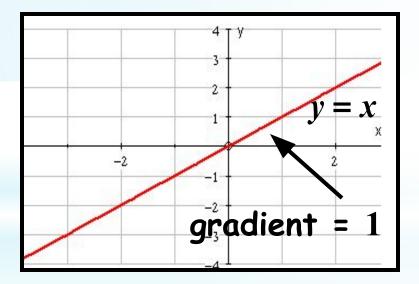


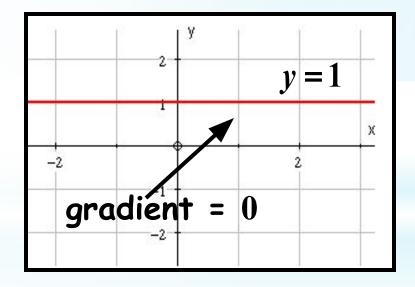






The gradients of the functions y = x and y = 1can also be found by the rule but as they represent straight lines we already know their gradients





Summary of Gradient Functions:

y	$\frac{dy}{dx}$
1	0
x	1
x^2	2 <i>x</i>
x ³	$3x^2$
x^4	$4x^3$
x^5	$5x^4$

The Gradient Function and Gradient at a Point

e.g.1 Find the gradient of the curve $y = x^3$ at the point (2, 12).

Solution: y

$$y = x^3$$

$$\Rightarrow \quad \frac{dy}{dx} = 3x^2$$

At
$$x = 2$$
, the gradient $m = \frac{dy}{dx} = 3(2)^2$
= 12

1. Find the gradient of the curve $y = x^4$ at the point where x = -1

Solution:
$$\frac{dy}{dx} = 4x^3$$
 At $x = -1$, $m = -4$

2. Find the gradient of the curve $y = x^3$ at the point $\left(\frac{1}{2}, \frac{1}{8}\right)$

Solution:
$$\frac{dy}{dx} = 3x^2 \text{ At } x = \frac{1}{2}, m = 3\left(\frac{1}{2}\right)^2 = \frac{3}{4}$$

The process of finding the gradient function is called differentiation.

The gradient function is called the derivative.

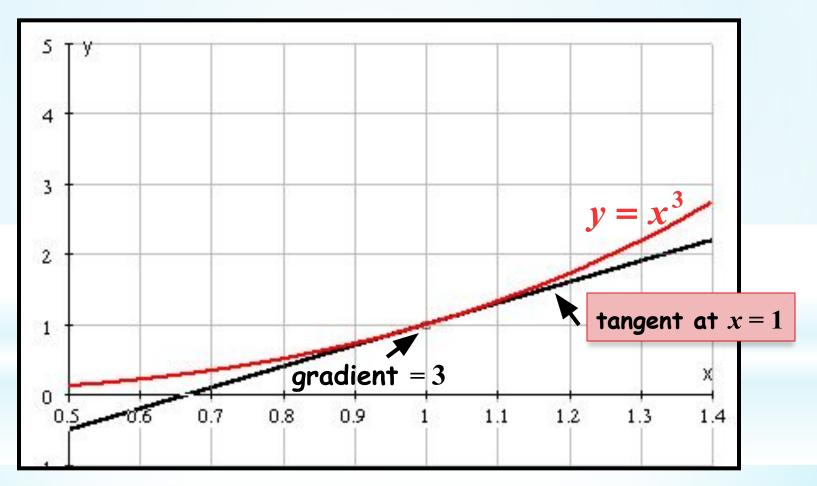
The rule for differentiating can be extended to curves of the form

$$y = ax^n$$

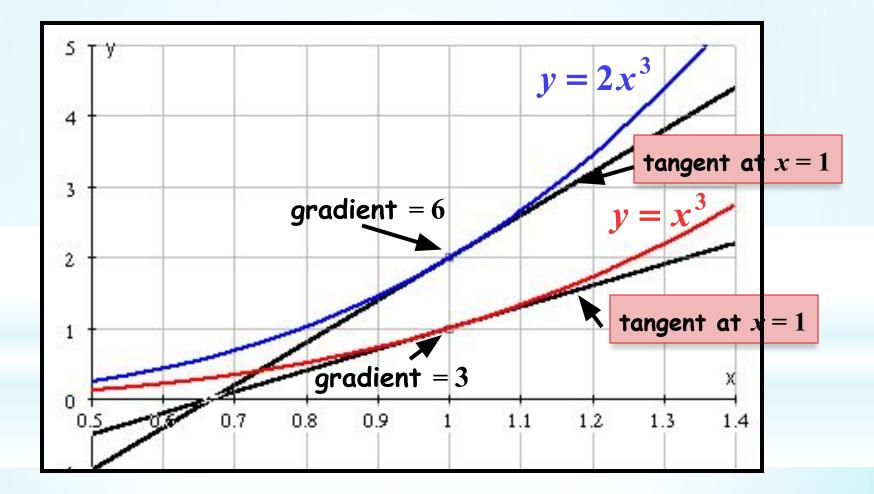
where a is a constant.

More Gradient Functions

e.g. Multiplying $y = x^3$ by 2 multiplies the gradient by 2



e.g. Multiplying $y = x^3$ by 2 multiplies the gradient by 2



Multiplying x^n by a constant, multiplies the gradient by that constant

e.g.
$$y = 2x^3 \implies \frac{dy}{dx} = 2 \times 3x^2 = 6x^2$$

The rule can also be used for sums and differences of terms.

For
$$y = ax^{3} + bx^{2} + cx + d$$
 $\frac{dy}{dx} = 3ax^{2} + 2bx + d$

For
$$y = \sum_{i=1}^{n} a_i \cdot x^i + c$$

$$\frac{dy}{dx} = \sum_{i=1}^{n} a_i \cdot i \cdot x^{i-1}$$

e.g.
$$y = \frac{1}{2}x^3 - 5x^2 + 7x - 3$$

 $\Rightarrow \frac{dy}{dx} = \frac{1}{2} \times 3x^2 - 5 \times 2x + 7 = \frac{3}{2}x^2 - 10x + 7$

Using Gradient Functions

e.g. Find the gradient at the point where x = 1 on the curve

Solution:
$$y = 3x^3 + 2x^2 - x + 4$$

Differentiating to find the gradient function:

$$\frac{dy}{dx} = 9x^2 + 4x - 1$$

When x = 1, gradient $m = 9(1)^2 + 4(1) - 1 \implies m = 12$

SUMMARY

- The gradient at a point on a curve is defined as the gradient of the tangent at that point
- The function that gives the gradient of a curve at any point is called the gradient function
- The process of finding the gradient function is called differentiating
- The rule for differentiating terms of the form

$$y = ax^{n}$$
 is $\frac{dy}{dx} = anx^{n-1}$
• "power to the front and multiply"
• "subtract 1 from the power"

Find the gradients at the given points on the following curves:

1.
$$y = 2x^3 - 5x^2 + 7x - 3$$
 at the point (1,1)
 $\frac{dy}{dx} = 6x^2 - 10x + 7$ When $x = 1$, $m = 3$

2.
$$y = 4x^3 + 3x^2 - 2x + 4$$
 at the point $(-1,5)$
 $\frac{dy}{dx} = 12x^2 + 6x - 2$ When $x = -1$, $m = 4$

3.
$$y = \frac{1}{2}x^2 - 2x + 1$$
 at the point $(2, -1)$
 $\frac{dy}{dx} = x - 2$ When $x = 2$, $m = 0$

Find the gradients at the given points on the following curves:

4.
$$y = (x-2)(x+4)$$
 at $(-1,-9)$
(Multiply out the brackets before using the rule)
 $y = x^2 + 2x - 8 \Rightarrow \frac{dy}{dx} = 2x + 2$ When $x = -1$, $m = 0$

5.
$$y = \frac{x^3 - 2x}{x}$$
 at (2, 2)
(Divide out before using the rule)
 $y = \frac{x^3}{x} - \frac{2x}{x} \implies y = x^2 - 2 \implies \frac{dy}{dx} = 2x$
When $x = 2 \implies m = 4$

_