"Прогрессии"

9 класс

- Числовая
 последовательность.
- Арифметическая прогрессия.
- •Геометрическая прогрессия.

Содержание:

<u>Числовая</u> послодовательность

В повседневной практике часто используется нумерация различных предметов, чтобы указать порядок их расположения. Например, в сберегательном банке по номеру лицевого счета вкладчика можно легко найти этот счет и посмотреть, какой вклад на нем лежит. Пусть на счете \mathbb{N}_2 1 лежит вклад a_1 рублей, на счете \mathbb{N}_2 2 лежит вклад a_2 рублей и т. д. Получается числовая последовательность

*a*₁,a₂,a₃...,a_N

где N — число всех счетов. Здесь каждому натуральному числу n от 1 до N поставлено в соответствие число a

В математике изучаются бесконечные числовые последовательности:

*a*₁,a₂,a₃...,a_N

Число а $_1$ называют *первым членом* последовательности, число a_2 — *вторым членом* последовательности, число a_3 — *третьим членом* последовательности и т. д.

Число a_N называют n-m (энным) членом последовательности, а натуральное число n — его номером.

Числовая последовательность задана формулой $a_n = n$ (n - 2). Вычислить сотый член этой последовательности.

Решение:

$$a_{100} = 100 (100 - 2) = 9800.$$

Ответ:9800.

Задача 1.

Числовая последовательность задана формулой $x_n = 2n + 3$. Найти номер члена последовательности, равного: 1) 43; 2) 50.

Решение:

- 1) По условию 2n + 3 = 43, откуда n = 20.
- 2) 2n + 3 = 50, откуда n = 23,5. Так как искомый номер натуральное число, то в данной последовательности нет члена, равного 50.

Ответ:1)20; 2)50.

Задача 2.

<u>Арифметическая</u> прогрессия.

Числовая последовательность

называется *арифметической прогрессией*, если для всех натуральных п выполняется равенство

$$a_{n+1} = a_n + d,$$
 где d — некоторое число.

Из этой формулы следует, что $a_{n+1} - a_n = d$. Число d называют pазностью арифметической прогрессии.

- 1) Натуральный ряд чисел 1, 2, 3, 4, ..., n, ... является арифметической прогрессией. Разность этой прогрессии d = 1.
- 2) Последовательность целых отрицательных чисел -1, -2, -3, ..., -n, ... арифметическая прогрессия с разностью d = -1.
- 3) Последовательность 3, 3, ..., 3, ... арифметическая прогрессия с разностью d = 0.

Примеры

каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому двух соседних с ним членов. Этим объясняется название «арифметическая» прогрессия.

$$a_n = a_1 + (n-1)d$$
 (1) K ,

<u>Формула n-го члена</u> арифметической прогрессии: Найти сотый член арифметической прогрессии, если первый её член равен -6 и d = 4.

ightharpoonup По формуле (1) имеем $a_{100} = -6 + (100-1) * 4 = 390.$

Задача 1.

Число 99 является членом арифметической прогрессии 3, 5, 7, 9, ... Найти номер этого члена.

► Пусть n — искомый номер. Так как $a_1 = 3$ и d = 2, то по формуле (1) имеем 99 = 3 + (n - 1) 2.

Поэтому 99 = 3 + 2n - 2; 98 = 2n, n = 49. Ответ: n = 49.

Задача 2.

В арифметической прогрессии $a_8 = 130$ и $a_{12} = 166$. Найти формулу n-го члена.

ightharpoonup Используя формулу (1), находим: $a_{\mathbf{g}} = a_{\mathbf{1}} + 4d$, $a_{\mathbf{1},\mathbf{2}} = a_{\mathbf{1}} + 11d$.

Подставив данные значения a_8 и a_{12} , получим систему уравнений относительно a_1 и d:

Задача 3.

$$\begin{cases} a1+7d=130 \\ a1+11d=166 \end{cases}$$

Вычитая из второго уравнения первое, получаем:

$$4d=36, d=9.$$
 Следовательно,

$$a_1 = 130 - 7d = 130 - 63 = 67.$$

Запишем формулу п-го члена прогрессии:

$$a_{\mathbf{n}} = 67 + 9 (\mathbf{n} - 1) = 67 + 9\mathbf{n} - 9 = 58 + 9\mathbf{n}.$$

Otbet:
$$a_n = 9n + 58$$
.

$$S_n = \frac{a_1 + a_n}{2} n \quad (2)$$

Сумма п первых членов арифметической прогрессии Найти сумму 38 + 35 + 32 + ... + (-7), если известно, что ее слагаемые являются последовательными членами арифметической прогрессии.

▶ По условию $a_1 = 38$, d = -3, $a_n = -7$. Применяя формулу $a_n = a_1 + (n-1)d$, получаем

-7 = 38 + (n - 1) (-3), откуда n = 16.

По формуле (2) находим: $S_{16} = 248$.

Задача

Геометрическая прогрессия

Числовая последовательность b_{4} , $b_2, b_3, ..., b_n, ...$ называется геометрической прогрессией, если для всех натуральных *п* выполняется равенство $b_{n+1} = b_n q$ где $b_{n} \neq 0, q$ некоторое число, не равное нулю.

Из этой формулы следует, что

$$\frac{b_{n+1}}{b_n} = q$$

 Число *q* называется знаменателем геометрической прогрессии. Если все члены прогрессии положительны, то

$$b_{n} = \sqrt{b_{n-1} * b_{n+1}}$$

т. е. каждый член геометрической прогрессии, начиная со второго, равен среднему геометрическому двух соседних с ним членов. Этим объясняется название «геометрическая» прогрессия.

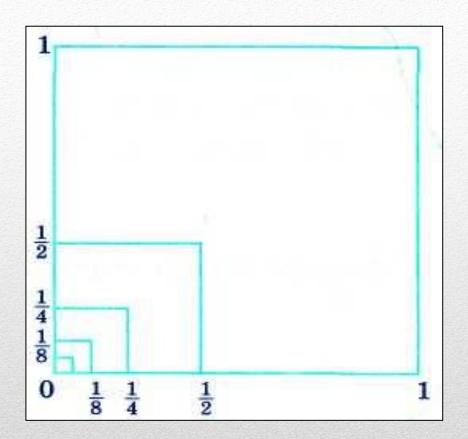
$$b_n = b_1 q^{n-1}$$

<u>Формула n-го члена геометрической</u> прогрессии.

$$S_n = \frac{b_1(1 - q^n)}{1 - q}$$

Сумма п первых членов геометрической прогрессии (со знаменателем q≠1)

Геометрическая прогрессия называется *бесконечно убывающей*, если модуль ее знаменателя меньше единицы.



Суммой бесконечно убывающей геометрической прогрессии называют число, к которому стремится сумма ее первых п членов при $n \rightarrow \infty$.

Сумма бесконечно убывающей геометрическо й прогрессии

$$S = \frac{b_1}{1 - q}$$

Спасибо за внимание!