
Понятие о пределе последовательности

Нам нужно ответить на вопросы:

- 1. Дайте определение числовой последовательности.
- 2. Какие способы задания числовой последовательности вы знаете? (Приведите примеры)
- 3. Дайте определение ограниченной сверху и снизу числовой последовательности. (Приведите примеры)
- 4. Какую последовательность называют возрастающей и убывающей? (Приведите примеры)

Последовательности составляют такие элементы природы, которые можно пронумеровать!

Обозначают члены последовательности так

$$a_1; a_2; a_3; a_4; ... a_n$$

1, 2, 3, 4, ..., n - порядковый номер члена последовательности.

(an)- последовательность, an - п-ый член последовательности

an-1 - предыдущий член последовательности

an+1 - последующий член последовательности

Занумерованный ряд чисел $a_1, a_2, \dots a_n$ называется числовой последовательностью

Понятие числовой последовательности возникло и развивалось задолго до создания учения о функции. Вот примеры бесконечных числовых последовательностей, известных еще в древности:

- 1, 2, 3, 4, 5,... последовательность натуральных чисел;
- 2, 4, 6, 8, 10,... последовательность четных чисел;
- 1, 3, 5, 7, 9, ... последовательность нечетных чисел;
- 1, 4, 9, 16, 25, ... последовательность квадратов натуральных чисел;
- 2, 3, 5, 7, 11, ... последовательность простых чисел;
 - $1; \frac{1}{2}; \frac{1}{3}; \frac{1}{4}; \dots$ последовательность чисел, обратных натуральным.

Способы задания последовательностей

АНАЛИТИЧЕСКИЙ

С помощью формулы n-ого члена – позволяет вычислить член последовательности с любым заданным номером

$$X_n = 3n + 2$$

$$X_5 = 3.5 + 2 = 17$$

 $X_{45} = 3.45 + 2 = 137$

СЛОВЕСНЫЙ С помощью описания

Например: Записать последовательность, все члены которой с нечётными номерами равны -10, а с чётными номерами равны 10.

-10; 10; -10; 10; -10; 10; ...

РЕККУРЕНТНЫЙ от слова recursio - возвращаться

$$x_1 = 1$$
; $x_{n+1} = (n+1)x_n$
 $n = 1$; 2; 3; ...

$$x_2 = (1+1)x_1 = 2 \cdot 1 = 2$$

 $x_3 = (2+1)x_2 = 3 \cdot 2 = 6$
 $x_4 = (3+1)x_3 = 4 \cdot 6 = 24$
 $x_5 = (4+1)x_4 = 5 \cdot 24 = 120$
 $x_6 = (5+1)x_5 = 6 \cdot 120 = 720$

Найдите закономерности

и покажите их с помощью стрелки:

VNOTULIA 5

$$a_n = n^4$$

$$a_n = n + 4$$

$$a_n = 2^n - 5$$

$$a_n = 3^n - 1$$

Дано:
$$(a_n)$$

$$a_n = (-1)^n n^2$$

Найти:
$$a_4$$
, a_6 , a_9

Решение:

$$a_4 = (-1)^4 \cdot 4^2 = 1 \cdot 16 = 16$$

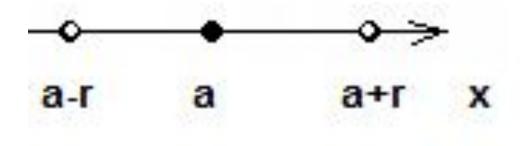
$$a_6 = (-1)^6 \cdot 6^2 = 1 \cdot 36 = 36$$

$$a_9 = (-1)^9 \cdot 9^2 = -1 \cdot 81 = -81$$

Свойства числовой последовательности

ПОСЛЕДОВАТЕЛЬНОСТЬЮ

ПОСЛЕДОВАТЕЛЬНОСТЬЮ


Рассмотрим две последовательности:

$$(y_n):1,3,5,7,9,...,2n-1,...;$$

 $(x_n):1,\frac{1}{2},\frac{1}{3},\frac{1}{4},\frac{1}{5},...,\frac{1}{n}$

Определение 1

Пусть а-точка прямой, а г положительное число.

Интервал (*a-r*, *a+r*) называют окрестностью точки *a*, а число r – радиусом окрестности.

Укажите окрестность точки *а* радиуса *r* в виде интервала, если:

a)
$$a = 0$$

 $r = 0,1$

$$(-0,1;0,1)$$

6)
$$a = -3$$

 $r = 0.5$

$$(-3,5; -2,5)$$

B)
$$a = 2$$

$$r=1$$

$$\Gamma$$
) $a = 0,2$

$$r = 0,3$$

$$(-0,1;0,5)$$

Окрестностью какой точки и какого радиуса является интервал

$$a = 2$$
 $r = 1$

$$a = 0$$

$$r = 0.2$$

$$a = 2,2$$
 $r = 0,1$

$$a = -6$$

$$r = 1$$

Определение 2

Число **b** называют пределом

последовательности (y_n) , если в любой заранее выбранной окрестности точки b содержатся все члены последовательности, начиная с некоторого номера.

Пишут и читают:

$$y_n \to b$$
 или $\lim_{n \to \infty} y_n = b$

Чему равен предел данной последовательности?

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots, \frac{1}{n}, \dots$$
 Вывод: $\lim_{n \to \infty} \frac{1}{n} = 0$

Вывод:
$$\lim_{n\to\infty}\frac{1}{n}=0$$

$$1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots, \left(\frac{1}{2}\right)^n, \dots$$

$$\lim_{\substack{1,\frac{1}{2},\frac{1}{4},\frac{1}{8},\frac{1}{16},\dots,\left(\frac{1}{2}\right)^{n},\dots}} \lim_{\substack{n \to \infty}} \lim_{\substack{n \to \infty}} C = C$$

$$\lim_{n\to\infty}q^n=0, ecnu|q|\langle 1$$

(теоремы) свойства:

1) Предел суммы равен сумме пределов

$$\lim_{n\to\infty}(x_n+y_n)=\lim_{n\to\infty}x_n+\lim_{n\to\infty}y_n$$

2) Предел произведения равен произведению пределов

$$\lim_{n\to\infty}(x_ny_n)=\lim_{n\to\infty}x_n\bullet\lim_{n\to\infty}y_n$$

3) Предел частного равен частному пределов

$$\lim_{n\to\infty} \left(\frac{x_n}{y_n}\right) = \frac{\lim_{n\to\infty} x_n}{\lim_{n\to\infty} y_n}$$

4) Постоянный множитель можно вынести за знак предела

$$\lim_{n\to\infty}(kx_n)=k\lim_{n\to\infty}x_n$$