Тема: Решение неравенств второй степени с одной переменной.

алгебра 9 класс

Цели:

- I) закрепить навыки и умения решения неравенств второй степени с одной переменной, используя алгоритм;
- 2) развивать логическое мышление учащихся, навыки работы с графиками;
- 3) воспитывать прилежание, трудолюбие, аккуратность, точность.

Определение:

Неравенства вида $ax^2 + bx + c > 0$ и $ax^2 + bx + c < 0$, где x - переменная, a, b, c —некоторые числа, причем $a \neq 0$ называются неравенствами второй степени c одной переменной.

Например:

1)
$$x^2 + 2x - 48 < 0$$

2)
$$x^2 - 6 \le 0$$

0

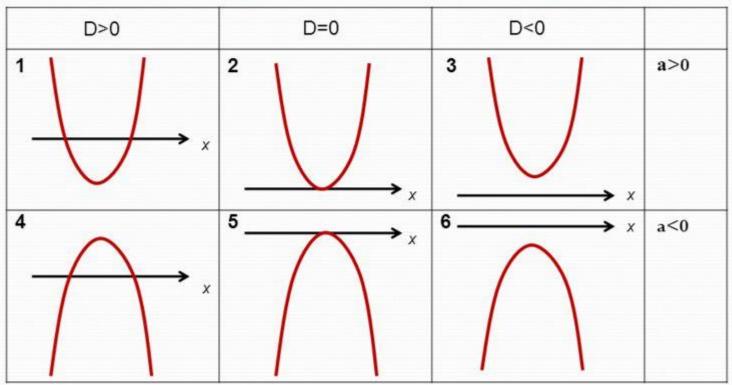
3)
$$7x + 2x^2 > 4$$

4)
$$x - 3 > 0$$

$$5) - 20 x^2 \le 5$$

6)
$$(x - 1)(x - 2)$$

7)
$$3x - 17x^2 >$$


8)
$$5x^2 - y > 9$$

9)
$$-3 x^2 - 6x +$$

Алгоритм:

- 1. Рассмотреть функцию, соответствующую данному неравенству;
- 2. Определить направление ветвей параболы;
- 3. Найти нули функции, т.е. точки пересечения графика функции с осью х, если они есть;
- 4. Изобразить схематически параболу на координатной прямой;
- 5. Выбрать нужные промежутки;
- 6. Записать ответ.

Для этого достаточно проанализировать, как расположен график функции $y = ax^2 + 6x + c$ в координатной плоскости: куда направлены ветви параболы и пересекает ли парабола ось х

Поэтому существует 12 различных случаев неравенств второй степени $ax^2 + bx + c > 0$ или $ax^2 + bx + c < 0$ МуShared Решения занесены в таблицу 1.

Таблица 1

	a>0	D>o	$1)ax^2+6x+c>0$	\ /	$(-\infty; \mathbf{x}_1) \mathrm{U}(\mathbf{x}_2; +\infty)$
1			$2)ax^2+6x+c<0$	X_1 X_2 X_3	$(x_1; x_2)$
2		D=o	$1)ax^2+6x+c>0$	\ /	$(-\infty; \mathbf{x}) \mathrm{U}(\mathbf{x}; +\infty)$
			$2)ax^2+6x+c<0$	\int_{X}	решений нет
120		D<0	$1)ax^2 + 6x + c > 0$	\ /	х –любое число
3			$2)ax^2+6x+c<0$	×	решений нет
	a <o< td=""><td rowspan="2">D>o</td><td>$1)ax^2 + 6x + c > 0$</td><td>$x_1 \longrightarrow x_2 \longrightarrow x$</td><td>$(x_1; x_2)$</td></o<>	D>o	$1)ax^2 + 6x + c > 0$	$x_1 \longrightarrow x_2 \longrightarrow x$	$(x_1; x_2)$
4			$2)ax^2+6x+c<0$		$(-\infty; \mathbf{x}_1) \mathrm{U}(\mathbf{x}_2; +\infty)$
20		D=o	$1)ax^2 + 6x + c > 0$	x ×	решений нет
5			$2)ax^2+6x+c<0$	/ \	$(-\infty; x) U(x;+\infty)$
6		D<0	$1)ax^2 + 6x + c > 0$	\rightarrow	решений нет
0			$2)ax^2+6x+c<0$	/ \	Amobile Shared

Самостоятельная работа:

Вариант I

1) $x^2 - 5x - 50 < 0$

2)
$$144 - 9x^2 \ge 0$$

3)
$$2x^2 - 5x - 3 < (x+5)(x-3)$$

Вариант 2

1)
$$3y^2 + 4y - 4 > 0$$

2)
$$2x^2 - 18 > 0$$

3)
$$2x(3x-1) \ge 4x^2 + 5x + 9$$

Проверка:

Вариант I

1) $x \in (-5;10)$

- 2) $x \in [-4;4]$
- 3) $x \in (3;4)$

Вариант 2

1)
$$y \in (-\infty; -2) \cup (\frac{2}{3}; +\infty)$$

2)
$$x \in (-\infty; -3) \cup (3; +\infty)$$

3)
$$x \in (-\infty; -1] \cup [4,5; +\infty)$$

Домашнее задание:

 $N_{9}314, N_{9}316(3,4), N_{9}320(B,e)$