

Альберт Эйнштейн 1879 - 1955

«Мне приходится делить время между политикой и уравнениями. Однако, уравнения гораздо важнее. Политика существует только для данного момента, а уравнения будут существовать вечно».

РЕПЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ.

МКОУ СОШ № 3 с. Эльхотово

УСТАНОВИТЕ СООТВЕТСТВИЕ:

$$\begin{array}{|c|c|} \hline \mathbf{2} & cos \ x = -1 \end{array}$$

$$3 sin x = 1$$

$$\begin{array}{|c|c|} \hline \textbf{4} & cos x = 1 \\ \hline \end{array}$$

$$\begin{array}{|c|c|} \hline \mathbf{7} & cos \ x = \mathbf{0} \end{array}$$

$$\frac{\pi}{2} + 2\pi k, \quad k \in \mathbb{Z}$$

 $2\pi k, k \in \mathbb{Z}$

$$\pi k, k \in \mathbb{Z}$$

$$\frac{\pi}{2} + \pi k, \quad k \in \mathbb{Z}$$

$$-\frac{\pi}{2} + 2\pi k, \quad k \in \mathbb{Z}$$

$$\pi + 2\pi k, \quad k \in \mathbb{Z}$$

$$\frac{\pi}{4} + \pi k, \quad k \in \mathbb{Z}$$

УСТАНОВИТЕ СООТВЕТСТВИЕ:

$$cos x = -1$$

$$3 \qquad sin x = 1$$

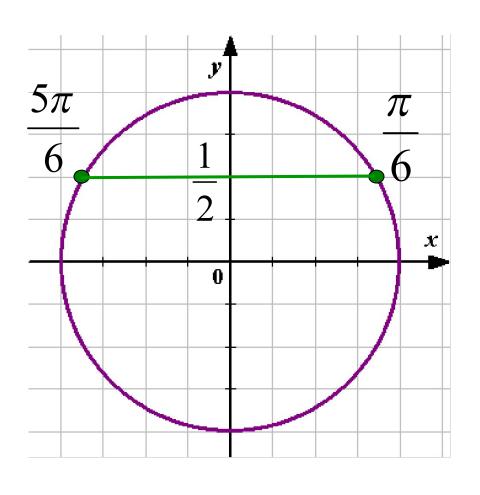
$$\begin{array}{|c|c|} \hline \textbf{4} & cos x = 1 \\ \hline \end{array}$$

$$\begin{array}{|c|c|} \hline \mathbf{7} & cos \ x = \mathbf{0} \end{array}$$

$$\frac{\pi}{2} + 2\pi k, \quad k \in \mathbb{Z}$$

 $2\pi k, \ k \in \mathbb{Z}$

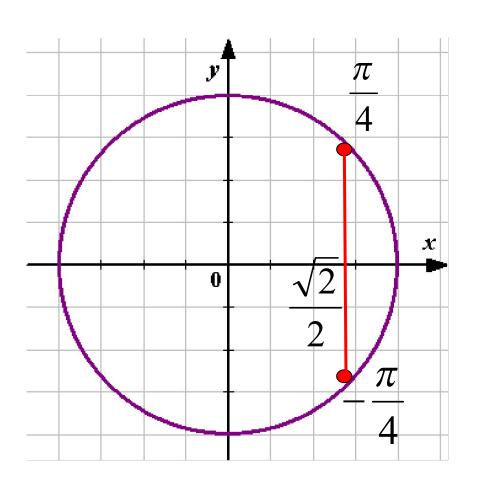
 πk , $k \in \mathbb{Z}$

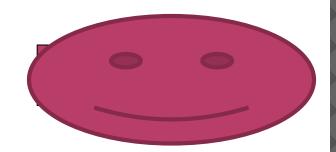

$$\frac{\pi}{2} + \pi k, \quad k \in \mathbb{Z}$$

$$-\frac{\pi}{2} + 2\pi k, \quad k \in \mathbb{Z}$$

$$\pi + 2\pi k, \quad k \in \mathbb{Z}$$

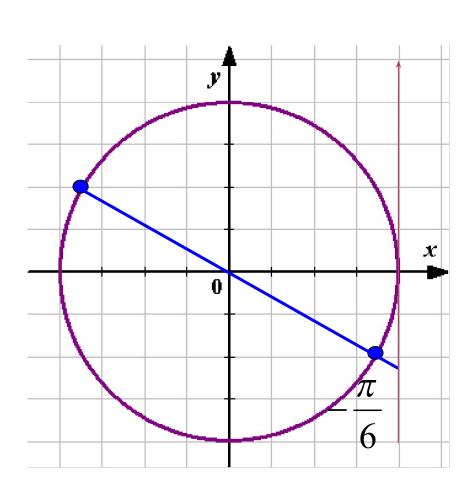
$$\frac{\pi}{4} + \pi k, \quad k \in \mathbb{Z}$$

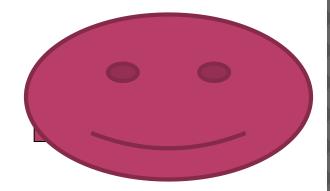


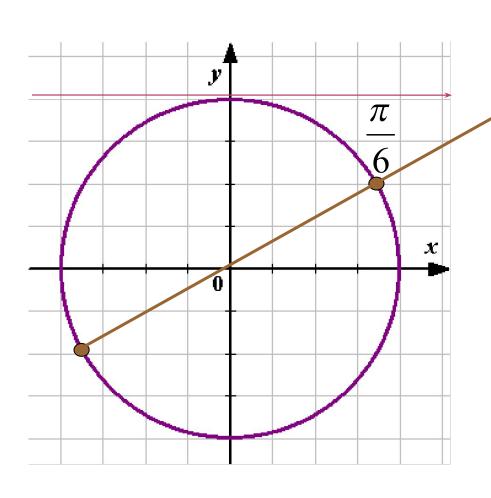


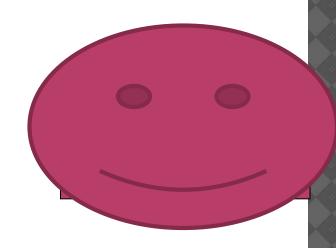
$$x = \frac{\pi}{6} + 2\pi n, \ n \in \mathbb{Z}$$

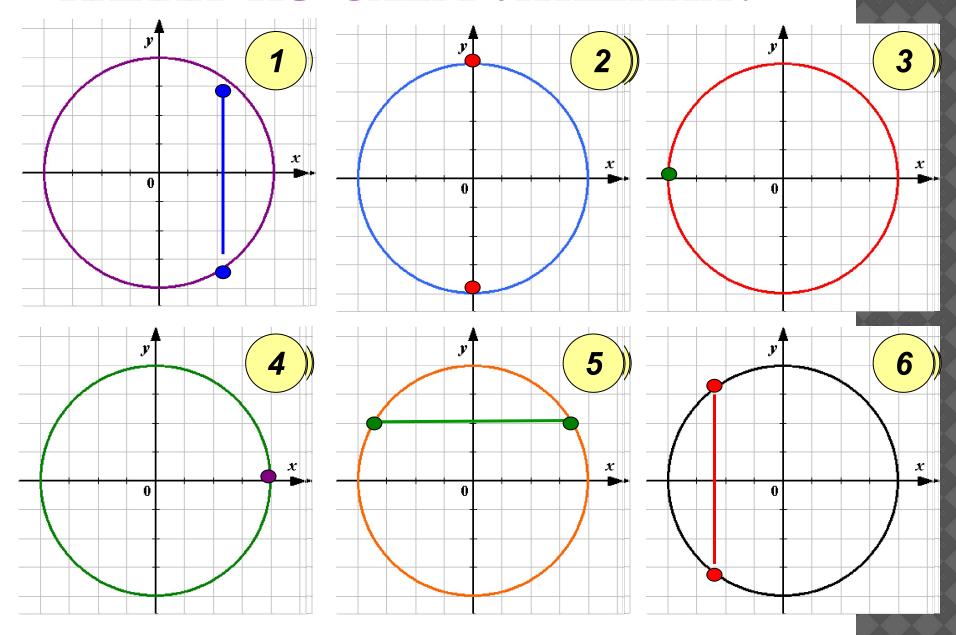
$$x = \frac{5\pi}{6} + 2\pi n, \ n \in \mathbb{Z}$$

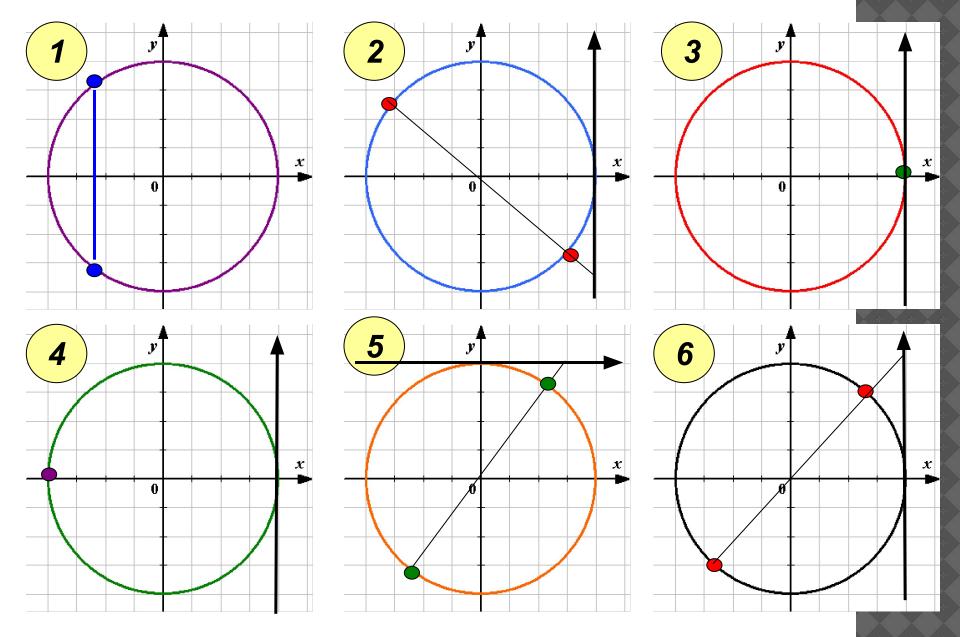





$$x = -\frac{\pi}{4} + 2\pi n, \ n \in \mathbb{Z}$$


$$x = \frac{\pi}{4} + 2\pi n, \ n \in \mathbb{Z}$$


$$x = -\frac{\pi}{6} + \pi n, \ n \in \mathbb{Z}$$



$$x = \frac{\pi}{6} + \pi n, \ n \in \mathbb{Z}$$

КАКАЯ ИЗ СХЕМ ЛИШНЯЯ?

КАКИЕ ИЗ СХЕМ ЛИШНИЕ?

САМОСТОЯТЕЛЬНАЯ РАБОТА

Вариант 1.

Вариант 2.

- 1. Каково будет решение yравнения cos x = a npu a > a
- 2. При каком значении а
- уравнение $\cos x = a$ имеет пешение?
- 3. Какой формулой выражается это решение?

- 1. Каково будет решение уравнения sin x = a при a > 1
- 2. При каком значении а yравнение sin x = a имеет pешение?
- 3. Какой формулой выражается это решение?

4.На какой оси откладывается значение а при решении уравнения $\cos x = a$?

4.На какой оси откладывается значение а при решении уравнения $\sin x = a$?

САМОСТОЯТЕЛЬНАЯ РАБОТА.

Вариант 1.

Вариант 2.

5. В каком промежутке находится arccos a? 5. В каком промежутке находится arcsin a?

6. В каком промежутке находится значение а?

6. В каком промежутке находится значение а?

7. Каким будет решение yравнения cos x = 1?

7. Каким будет решение yравнения sin x = 1?

8. Каким будет решение yравнения cos x = -1?

8. Каким будет решение yравнения sin x = -1?

САМОСТОЯТЕЛЬНАЯ РАБОТА

Вариант 1.

Вариант 2.

9. Каким будет решение yравнения cos x = 0?

9. Каким будет решение yравнения sin x = 0?

10. Чему равняется arccos (- α)?

10. Чему равняется arcsin (- α)?

11. В каком промежутке находится arctg a?

11. В каком промежутке находится агсства?

12. Какой формулой выражается решение уравнения $tg \ x = \alpha$?

12. Какой формулой выражается решение уравнения $ctg \ x = \alpha$?

N⁰	Вариант 1.	Вариант 2.
1.	Нет решения	Нет решения
2.	$ a \leq 1$	$ a \le 1$
3 •	$x = \pm \arccos a + 2\pi n, \ n \in \mathbb{Z}$	$x = (-1)^n \arcsin a + \pi k, \ k \in \mathbb{Z}$
4.	Ha ocu Ox	На оси Оу
5 •	$[0; \pi]$	$\left[-\pi/2; \pi/2\right]$
6.	[-1; 1]	[-1; 1]
<i>7</i> •	$x=2\pi n, n\in \mathbb{Z}$	$x = \pi / 2 + 2\pi k, \ k \in \mathbb{Z}$
8.	$x = \pi + 2\pi n, \qquad n \in \mathbb{Z}$	$x = -\pi/2 + 2\pi k, \ k \in \mathbb{Z}$
9.	$x = \pi / 2 + \pi n, \ n \in \mathbb{Z}$	$x = \pi k, k \in \mathbb{Z}$
10.	π – arccos a	- arcsin a
11.	$(-\pi/2; \pi/2)$	$(0; \pi)$
12.	$x = arctg \ a + \pi n, \ n \in \mathbb{Z}$	$x = arcctg \ a + \pi k, \ k \in \mathbb{Z}$

оцени себя

- 0 неверных ответов «5»
- 1-2 неверных ответа «4»
- 3-5 неверных ответов «3»
- 6 и более неверных ответов «2»

Необходимо выбрать соответствующий прием для решения уравнений.

Уравнения сводимые к алгебраическим.

Bapuahm 1:
$$\cos 2x + \sin^2 x + \sin x = 0,25$$

Вариант 2:
$$3\cos 2x - 5\cos x = 1$$

Разложение на множители

Bapuahm 1:
$$3\sin^2 x - \sqrt{3}\sin x \cos x = 0$$

Bapuahm 2:
$$3\cos^2 x + \sqrt{3}\sin x \cos x = 0$$

Введение новой переменной (однородные уравнения)

Bapuahm 1: $3\cos^2 x - 5\sin^2 x - \sin 2x = 0$

Bapuahm 2: $\cos 2x + \cos^2 x + \sin x \cos x = 0$

Введение вспомогательного аргумента.

Вариант 1:

$$\sin x - \sqrt{3}\cos x = 2$$

Вариант 2:

$$\sqrt{2}\cos x + \sqrt{2}\sin x = 1$$

Уравнения, решаемые переводом суммы в произведение

$$\sin x + \sin 3x = 4\cos^3 x$$

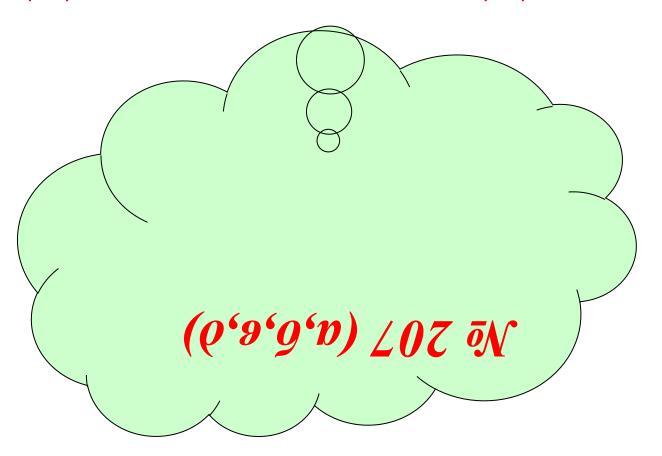
B2:
$$\cos 3x - \cos 5x = \sin 4x$$

Применение формул понижения степени.

ФОРМУЛЫ КВАДРАТА ПОЛОВИННЫХ УГЛОВ:

$$\sin^2\frac{\alpha}{2} = \frac{1-\cos\alpha}{2}$$

$$\cos^2\frac{\alpha}{2} = \frac{1 + \cos\alpha}{2}$$


$$\sin^2 \alpha = \frac{1}{2} (1 - \cos 2\alpha) \cos^2 \alpha = \frac{1}{2} (1 + \cos 2\alpha)$$

$$2\sin^2 x + \cos 4x = 0$$

B1:
$$\sin^2 x + \sin^2 2x + \sin^2 3x = 1,5$$

 $\cos^2 x + \cos^2 2x + \cos^2 3x = 1,5$

ДОМАШНЕЕ ЗАДАНИЕ:

Спасибо за урок!