МНОГОЧЛЕНЫ ОТ ОДНОЙ ПЕРЕМЕННОЙ

Одночлен (мононом) — произведение числа и конечного количества множителей.

$$12,4x^2y^5$$

$$deg(12,4x^2y^5) = 7$$
 (англ. Degree – степень)

$$deg(12,4) = 0$$

$$0 = 0x^2y^5... - нулевой одночлен$$

Многочлен (полином) — сумма конечного числа одночленов.

$$f = 12,4x^{2}y^{5} + 1,8x^{5}y^{3};$$
 $\deg(f) = 8$
 $p = 12,4;$ $\deg(p) = 0$
 $g = 0 = \Theta -$ *нулевой многочлен*;
 $f(x) \neq 0, \quad f(x) \neq \Theta$
 $\deg(\Theta) = -\infty$ *Свойства*:
 $1) - \infty + n = -\infty;$
 $2) - \infty + (-\infty) = -\infty;$
 $3) - \infty \mid m, e \partial e \mid m \geq 0.$

$$f = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$$

многочлен с одной переменной где n —любое натуральное число или ноль, коэффициенты a_0 $a_{1...}$ a_n — произвольные числа.

Произведение многочленов

 Если произведение двух многочленов равно нулевому многочлену, то хотя бы один из многочленов нулевой

$$f \times g = \Theta$$
, m.e. $f = \Theta$ или $g = \Theta$.

 Степень произведения двух ненулевых многочленов равна сумме степеней этих многочленов

$$deg (f \times g) = deg f + deg g$$

 Свободный член произведения двух многочленов равен произведению их свободных членов

Деление многочленов с остатком

$$\begin{array}{r}
- (x^{3}) - 3x^{2} + 5x - 15(x) - 2 \\
x^{3} - 2x^{2} & x^{2} - x + 3 \\
\hline
- (x^{2}) + 5x - 15 \\
- x^{2} + 2x \\
\hline
- (3x) - 15 \\
3x - 6
\end{array}$$

$$x^{3}-3x^{2}+5x-15=(x-2)(x^{2}-x+3)-9$$

Многочлен и его корни

$$- x^{3} - 3x^{2} + 5x - 15 x - 2$$

$$- x^{3} - 2x^{2} + 5x - 15 x - 2$$

Остаток от деления многочлена р (x) ненулевой степени на двучлен x-а равен p(a).(теорема Безу)

$$\frac{3x-6}{-9}$$

$$p(2) = 2^3 - 3 \cdot 2^2 + 5 \cdot 2 - 15 = -9$$

Многочлен и его корни

$$-\frac{(x^3)-3x^2+5x-15(x)-3}{x^3-3x^2} - \frac{x^2+5}{5x-15}$$

$$x^3 - 3x^2 + 5x - 15 = (x - 3)(x^2 + 5)$$

МЕТОД НЕОПРЕДЕЛЕННЫХ КОЭФФИЦИЕНТОВ

Разложить на множители многочлен

$$f(x) = 2x^4 - x^3 - 9x^2 - x + 1$$

$$2x^{4} - x^{3} - 9x^{2} - x + 1 = (ax^{2} + bx + c)(kx^{2} + lx + n)$$

$$2x^4 - x^3 - 9x^2 - x + 1 =$$

$$= akx^{4} + (al + bk)x^{3} + (an + ck + bl)x^{2} + (bn + cl)x + cn$$

$$\begin{cases} ak = 2\\ al + bk = -1\\ an + ck + bl = -9\\ bn + cl = -1\\ cn = 1 \end{cases}$$

$$\begin{cases} ak = 2\\ al + bk = -1\\ an + ck + bl = -9\\ bn + cl = -1\\ cn = 1 \end{cases}$$

1.
$$a = 1$$
, $k = 2$, $c = 1$, $n = 1$

Получим систему уравнений:

$$\begin{cases} a = 1, & k = 2 \\ l + 2b = -1 \\ 1 + 2 + bl = -9 \end{cases} b = 0, l = -1 \\ b + l = -1 \\ c = 1, n = 1$$

2.
$$a = 1$$
, $k = 2$, $c = -1$, $n = -1$

$$\begin{cases}
a = 1, & k = 2 \\
l + 2b = -1 \\
-1 - 2 + bl = -9 \\
-b - l = -1
\end{cases}$$
 $b = -2$, $l = 3$

$$c = -1$$
, $n = -1$

$$2x^4 - x^3 - 9x^2 - x + 1 = (x^2 - 2x - 1)(2x^2 + 3x - 1)$$

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 =$$

$$(x-c)(b_{n-1} x^{n-1} + b_{n-2} x^{n-2} + \dots + b_1 x + b_0) + r$$

$$\begin{cases} a_{n} = b_{n-1}, \\ a_{n-1} = b_{n-2} - cb_{n-1}, \\ a_{1} = b_{0} - cb_{1}, \\ a_{0} = r - cb_{0}. \end{cases}$$

$$\begin{cases} b_{n-1} = a_n, \\ b_{n-2} = a_{n-1} + cb_{n-1}, \\ b_0 = a_1 + cb_1, \\ r = a_0 + cb_0. \end{cases}$$

СХЕМА ГОРНЕРА

$$x^{3}-6x+5=0$$
 5 $\pm 1,\pm 5$
 $x = 1, 1-6+5=0$

	1	0	-6	5
1	1	$0+1\cdot 1=1$	$-6+1\cdot 1=-5$	$5+1\cdot(-5)=0$

$$(x-1)(x^2-x-5)=0$$

$$6x^3 + 10x^2 + 8x - 4 = 0$$

$$\frac{4}{6}$$
 $\pm 1, \pm \frac{1}{3}, \pm \frac{2}{3}$

	6	10	8	-4
$\frac{1}{3}$	6	$10 + \frac{1}{3} \cdot 6 = 12$	$8 + \frac{1}{3} \cdot 12 = 12$	$-4 + \frac{1}{3} \cdot 12 = 0$

$$\left(x-\frac{1}{3}\right)\left(6x^2+12x+12\right)=0$$