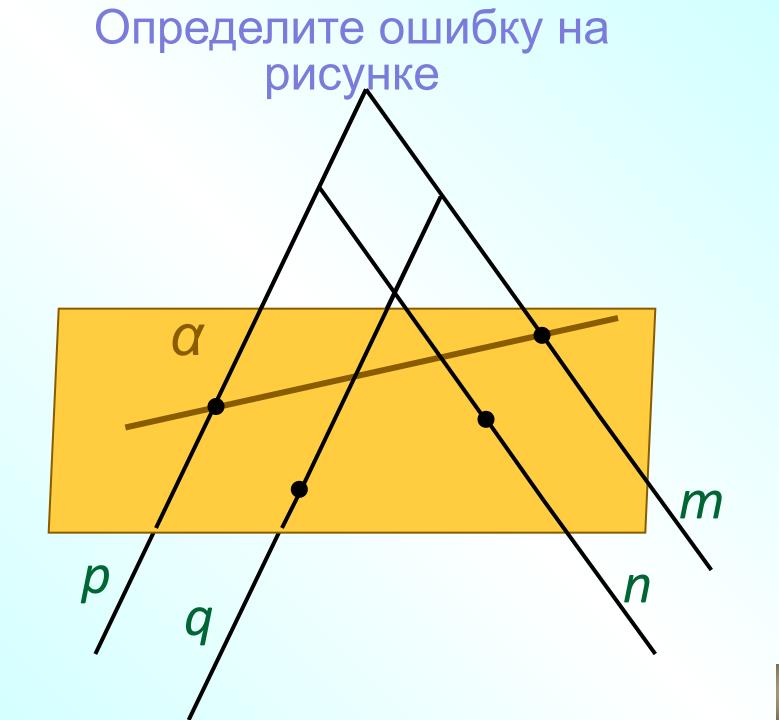
ITADAILEIBHOCIUb Feomempus 10

Довлатбегян Виктория
Александровна
учитель высшей категории
МБОУ «Лицей»
г.Протвино МО



Взаимное расположение прямых в пространстве allb $c \cap d$

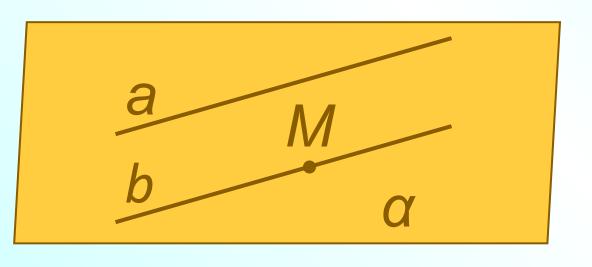
Параллельные прямые в пространстве

Определени Две прямые называются е. параллельными, если они лежат в одной плоскости и не пересекаются.

allb

Теорема о параллельных прямых

Через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и притом только одна.



<u>Дано:</u> а, М ∉ а

Доказать:

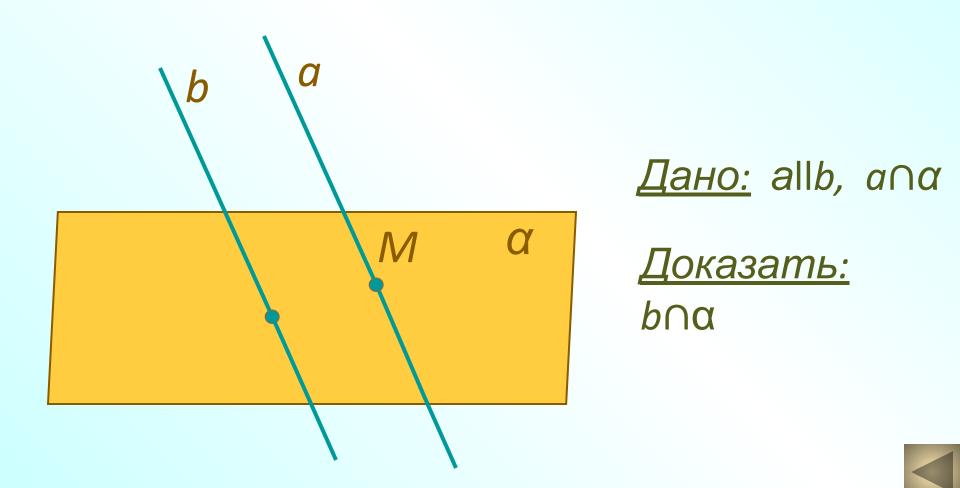
1) $\exists b, M \in b, a \parallel$

b

2) b - 1

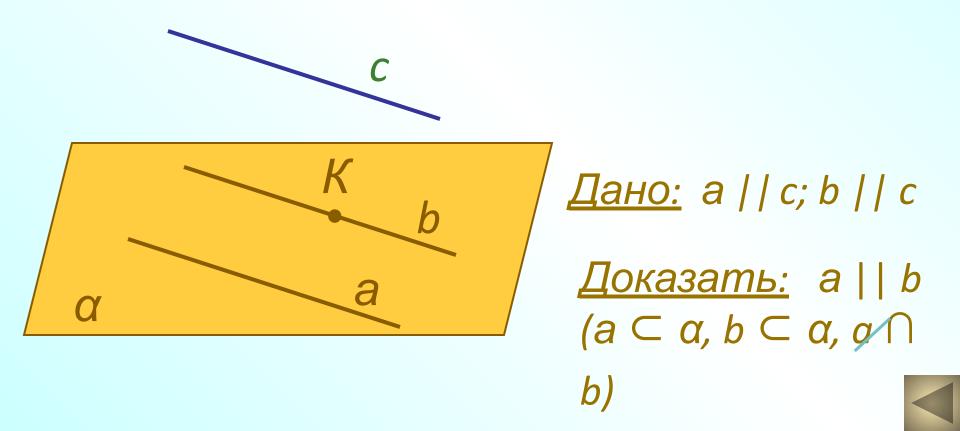
Лемма

Если одна из двух параллельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость.



Теорема о параллельности трех прямых

Если две прямые параллельны третьей прямой, то они параллельны.

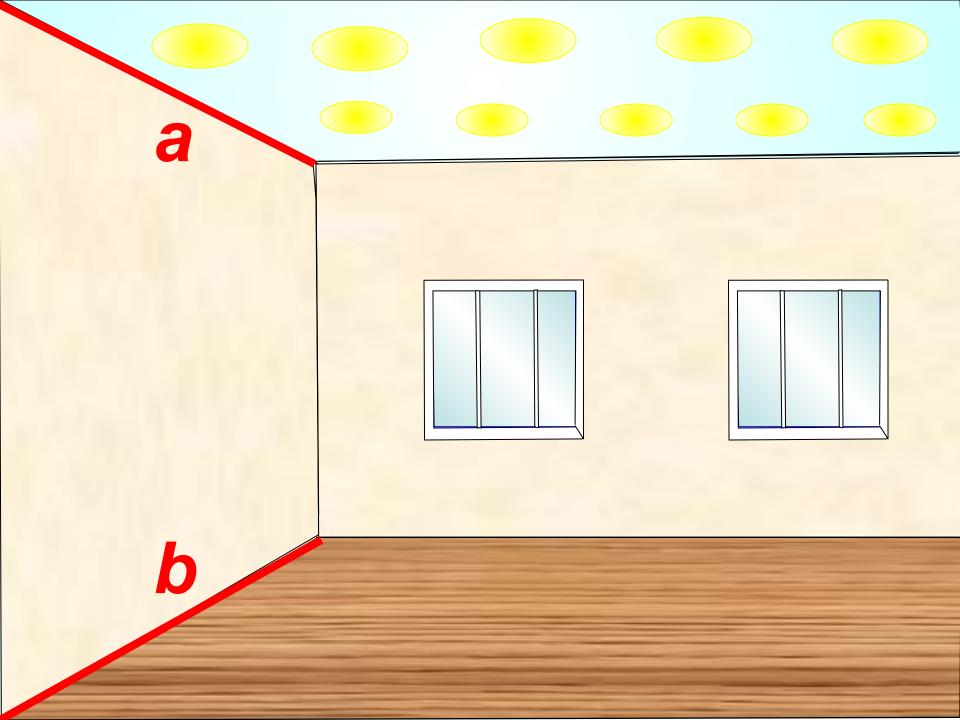


Три случая взаимного расположения прямой и плоскости

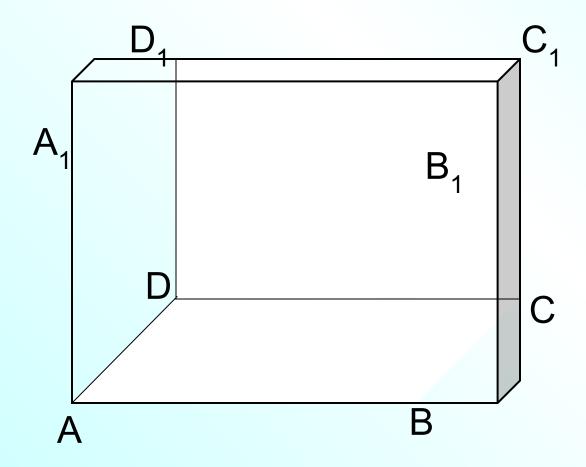
Наглядное представление о прямой, параллельной плоскости, дают натянутые троллейбусные или трамвайные провода – они параллельны плоскости земли.

 $a \parallel \alpha$

a

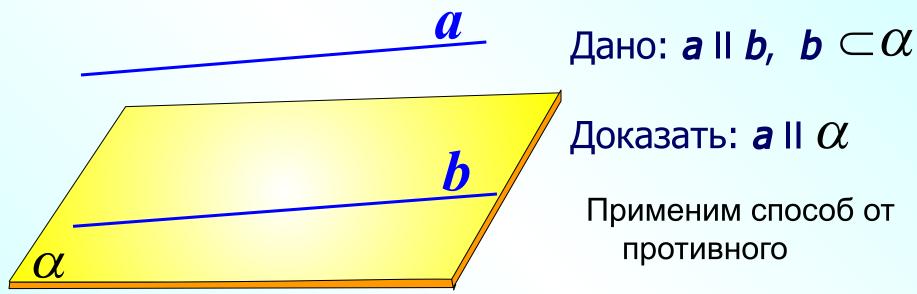


Назовите прямые, параллельные данной плоскости



Теорема

Если прямая не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна этой плоскости.

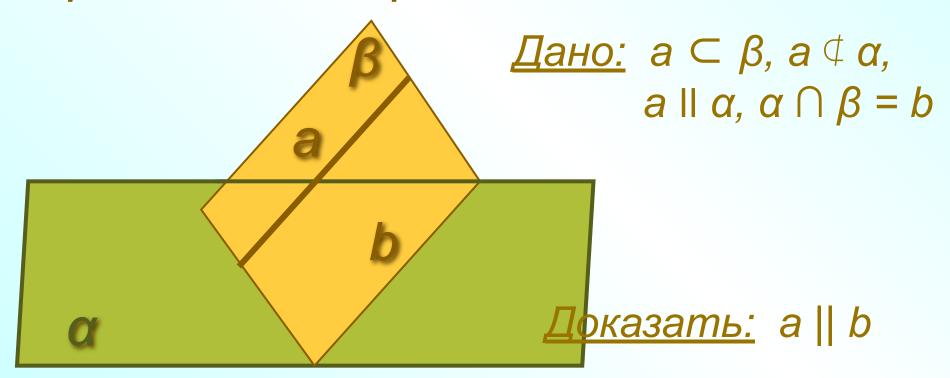


Предположим, что прямая а пересекает плоскость ${\cal C}$. Тогда по лемме о пересечении плоскости параллельными прямыми прямая b также пересекает ${\cal C}$.

Это противоречит условию теоремы: $b \subset \alpha$ Значит, наше предположение не верно, $\mathcal{A} \Vdash \alpha$

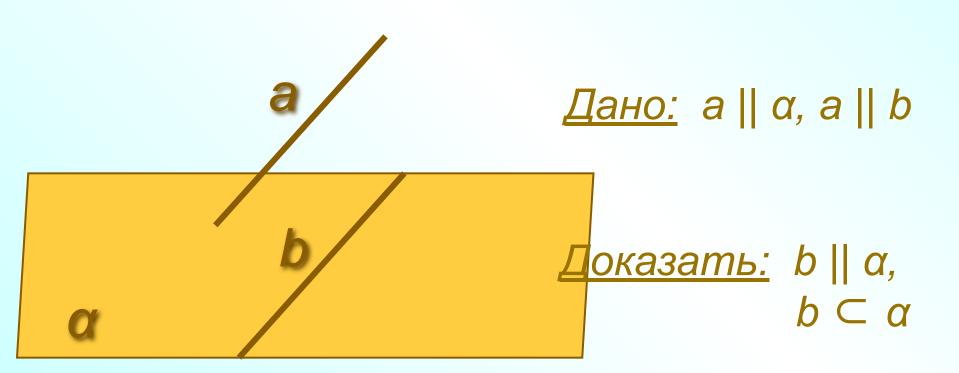
Свойства параллельности прямой и плоскости (1°)

Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.

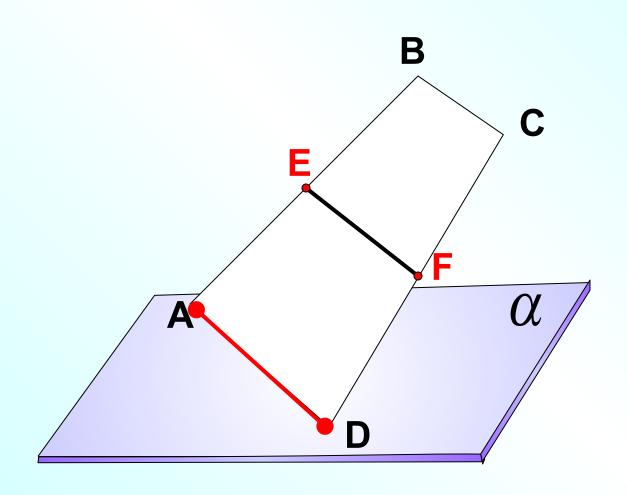


Свойства параллельности прямой и плоскости (2°)

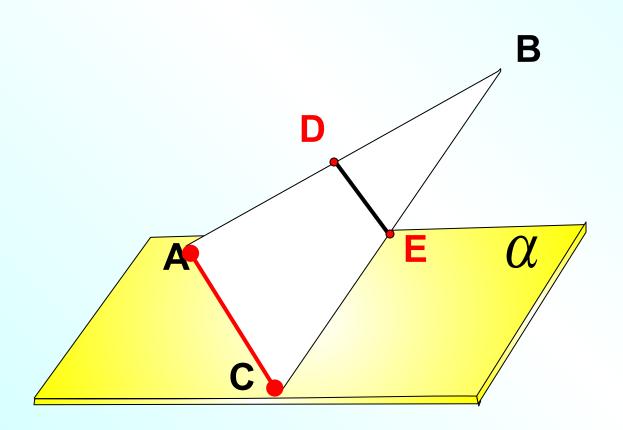
Если одна из двух параллельных прямых параллельна данной плоскости, то другая прямая либо также параллельна данной плоскости, либо лежит в этой плоскости.



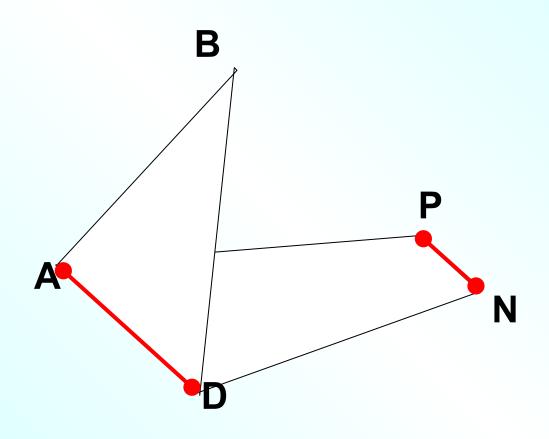
№1. Плоскость проходит через основание AD трапеции ABCD. Точки E и F - середины отрезков AB и CD соответственно. Докажите, что EF II α



№2. Плоскость α проходит через сторону АС треугольника АВС. Точки D и E - середины отрезков АВ и ВС соответственно. Докажите, что DE II α

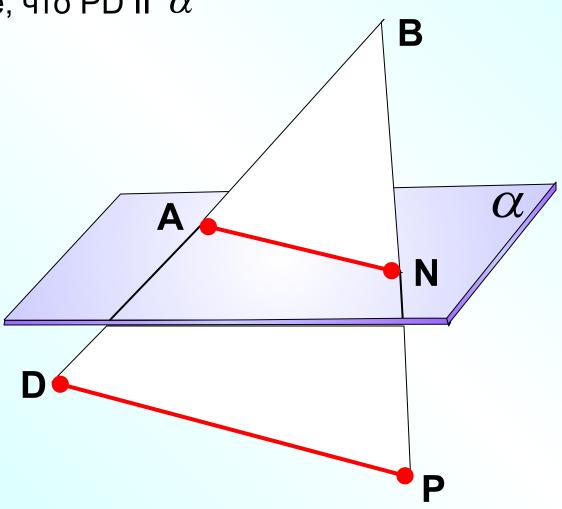


№3. ADNP – трапеция, ADB – треугольник. Докажите, что PN II (ABD)

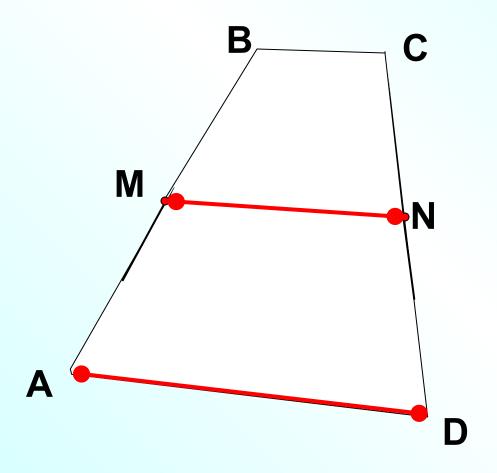


№4.PDB – треугольник. А и N – середины сторон BD и BP соответственно.

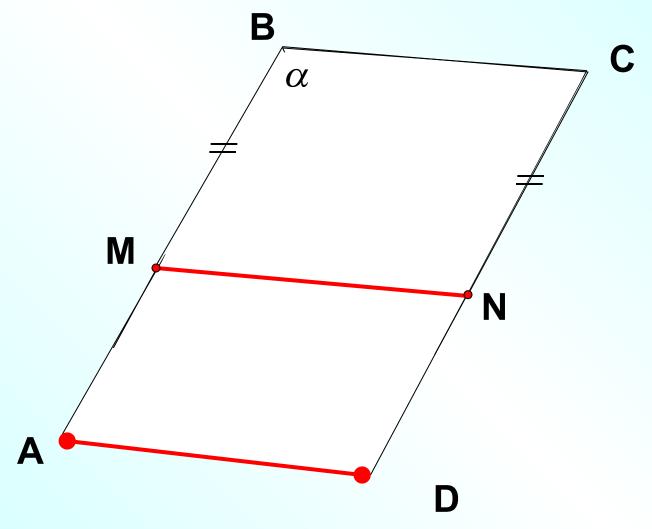
Докажите, что PD II $\, lpha \,$



№5. Плоскость проходит через середины боковых сторон АВ и CD трапеции ABCD – точки М и N.



Докажите, что AD II α . Найдите BC, если AD=10 см, MN= 8 см.



№6. ABCD – параллелограмм. BM=NC. Через точки М и N BM=NC. Через точки М и N проходит плоскость.

Докажите, что AD II lpha

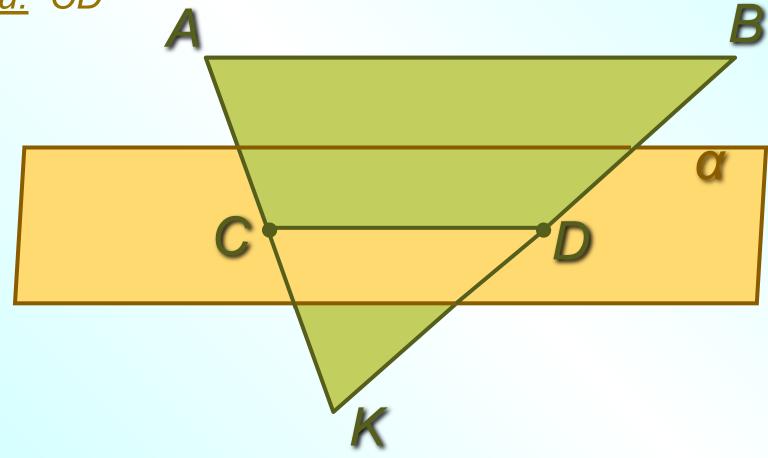
Решите задачу 7

Дано: AB || α ; (ABK) \cap α = CD;

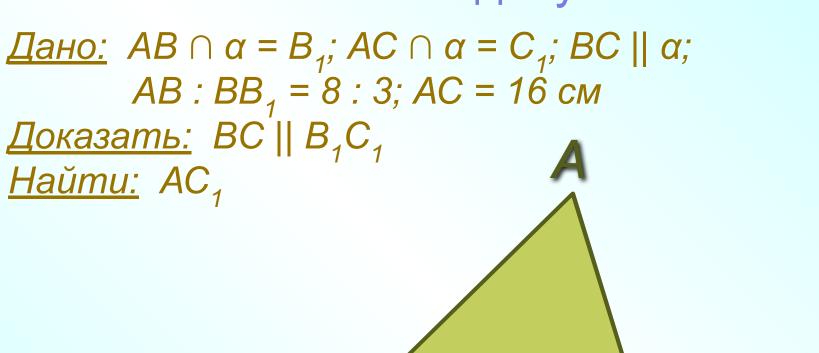
CK = 8; AB = 7; AC = 6

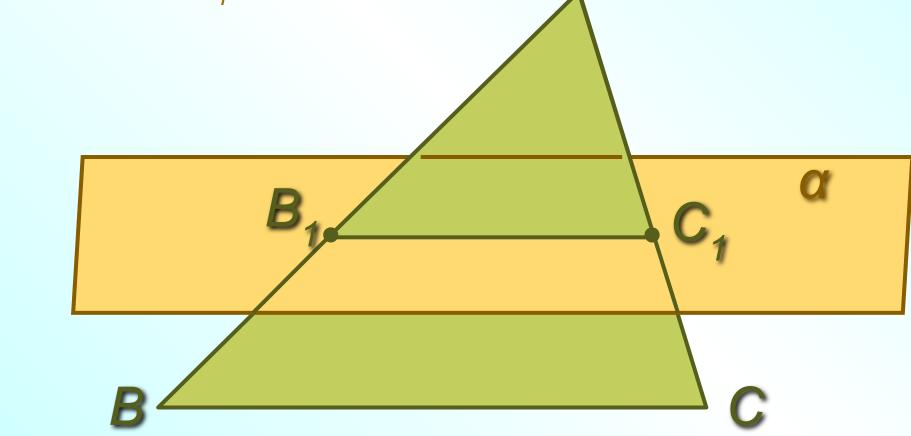
<u>Доказать:</u> АВ || CD

Haŭmu: CD



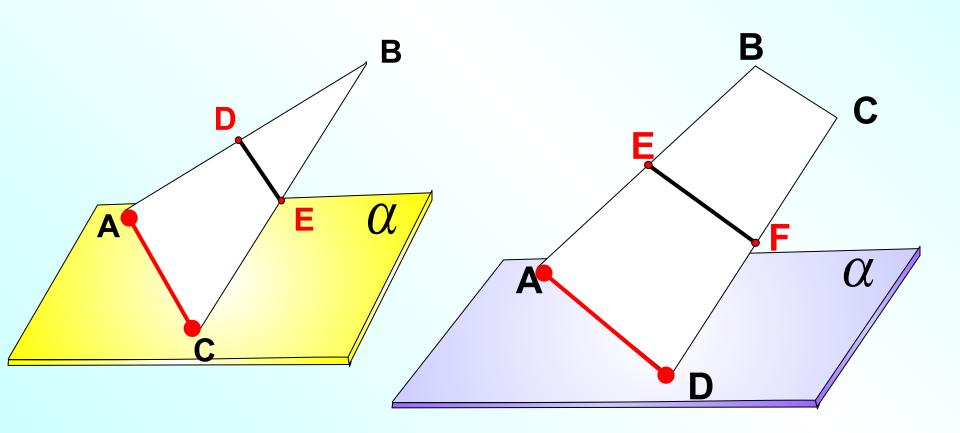
Решите задачу 8





Плоскость α проходит через сторону АС треугольника АВС. Точки D и E - середины отрезков АВ и ВС соответственно. Докажите, что DE II α

Плоскость α проходит через основание AD трапеции ABCD. Точки Е и F - середины отрезков AB и CD соответственно. Докажите, что EF II α



Отрезок АВ пересекает плоскость α , точка С – середина АВ. Через точки А, В и С проведены параллельные прямые, пересекающие плоскость α в точках A_1 , B_1 и C_1 .

