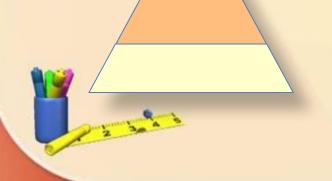

Обобщающий урок по алгебре



Цели урока:

- ❖обобщить и систематизировать знания и умения по теме;
- ❖ совершенствовать навыки преобразований, нахождения значений тригонометрических выражений, доказательства тождеств;
- выявить наиболее слабо понятые вопросы данной темы для их дальнейшей коррекции.



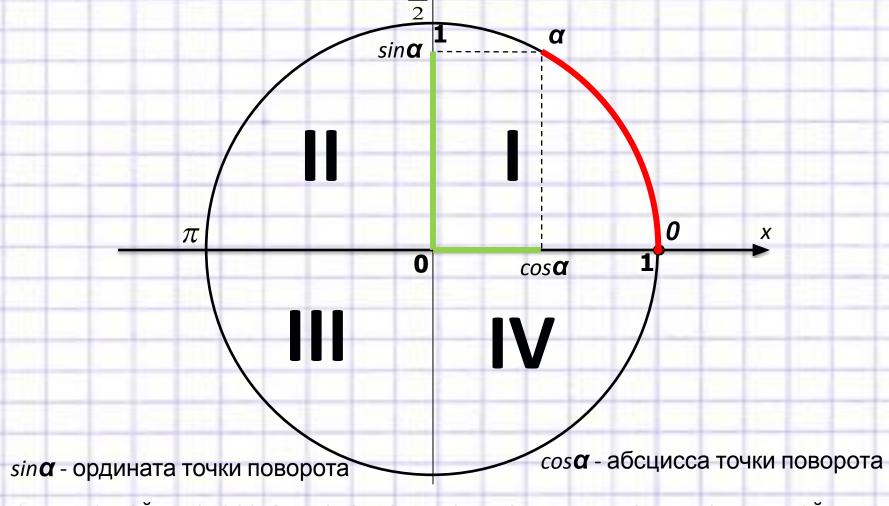
разума...»

Марков А.А.

Что-такое тригоно-тетрия?



Зарождение тригонометрии относится к глубокой древности. Само название «тригонометрия» греческого происхождения, обозначающее «измерение треугольников».



Одним из основоположников тригонометрии считается древнегреческий астроном Гиппарх, живший во 2 веке до нашей эры.

Гиппарх является автором первых тригонометрических таблиц и одним из основоположников астрономии.

Вспомним, с чего все начиналось:

(под «точкой поворота» следует понимать – «точку единичной тригонометрической окружности, полученной при повороте на α радиан от начала отсчета»)

Определите знак тригонометрического выражения

$$\sin 365^{\circ} > 0$$

$$\sin 235^{\circ} < 0$$

$$ctg\frac{3\pi}{4} < 0$$

$$\cos\frac{2\pi}{3} < 0$$

$$\cos(-91^{\circ}) < 0$$

$$tg(-124^{\circ}) > 0$$

Определите какой четверти принадлежит угола

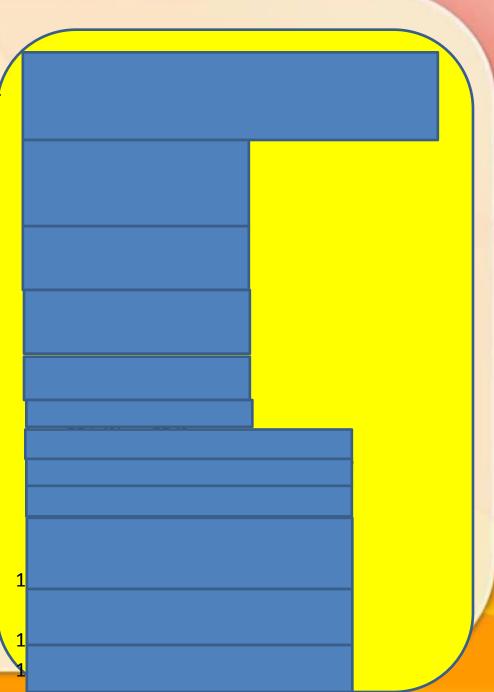
$$\cos \alpha > 0$$
, $\sin \alpha < 0$

$$\alpha \in 4$$
 четверти

$$tg\alpha > 0, \cos\alpha < 0$$

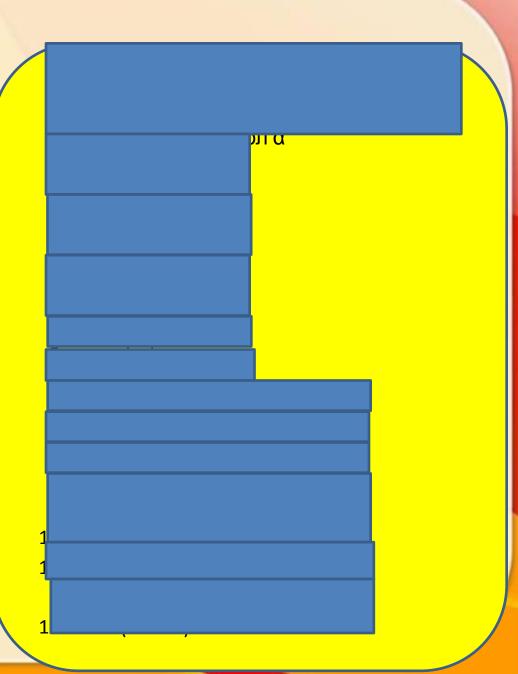
$$\alpha \in 3$$
 четверти

$$ctg\alpha < 0, \sin\alpha > 0$$



Синусом угла α называется _____
точки, полученной поворотом
точки _____ вокруг начала координат
на угол α

- 2. $tg \alpha =$
- 3. $\sin^2 \alpha + \cos^2 \alpha =$
- 4. $1 + tg^2 \alpha =$
- 5. $\sin(-\alpha)$ =
- 6. $tg(-\alpha) =$
- 7. $\cos(\alpha+\beta)=$
- 8. $\sin(\alpha-\beta)=$
- 9. $\sin 2\alpha =$
- 10. $tg(\alpha+\beta)=$


11. $\sin(\pi - \alpha) =$

12. $\cos(\frac{\pi}{2} + \alpha) =$

1. Косинусом угла α называется _____ точки, полученной поворотом точки_____ вокруг начала координат на угол α

- 2. ctg α =
- 3. $tg \alpha \cdot ctg \alpha =$
- 4. $1 + ctg^2 \alpha =$
- 5. $\cos (-\alpha) =$
- 6. $ctg(-\alpha) =$
- 7. $\cos(\alpha-\beta)=$
- 8. $\sin(\alpha+\beta)=$
- 9. $\cos 2\alpha =$
- 10. $tg 2\alpha =$
- 11. (α) (α) (α)
- 12. $\sin(\frac{\pi}{2} + \alpha)$

Упростите выражение:

$$(\cos^{2}\alpha * tg^{2}\alpha + \sin^{2}\alpha * ctg^{2}\alpha) + ctg^{2}\alpha =$$

$$= \cos^{2}\alpha * \frac{\sin^{2}\alpha}{\cos^{2}\alpha} + \sin^{2}\alpha * \frac{\cos^{2}\alpha}{\sin^{2}\alpha} +$$

$$+ ctg^{2}\alpha = (\sin^{2}\alpha + \cos^{2}\alpha) + ctg^{2}\alpha =$$

$$= 1 + ctg^{2}\alpha = \frac{1}{\sin^{2}\alpha}$$

	Задани	Отве			
Найдите значения выражени й	1) $3\sin\frac{\pi}{6} - tg\frac{\pi}{4}$	$\dots = 3 \cdot \frac{1}{2} - 1 = 1, 5 - 1 = 0, 5$			
	$2) 2\cos\frac{\pi}{3} + \sin\pi$	$\dots = 2 \cdot \frac{1}{2} + 0 = 1$			
	3) $3tg\frac{\pi}{4} - \sin\frac{\pi}{2}$	$ = 3 \cdot 1 - 1 = 2$			

Nο			1	2	3	4
1	$\sin^2\frac{\pi}{4} + \cos\frac{\pi}{3} + 2tg\pi$	$\cos^2\frac{\pi}{4} - tg^2\frac{\pi}{4} - \sin\frac{\pi}{6}$	1	$-\frac{1}{2}$	-1	$\frac{1}{2}$
2	$\frac{ctg\frac{\pi}{6}\cdot\sin\frac{\pi}{6}}{\cos\frac{\pi}{3}}$	$\frac{tg60^{\circ} \cdot \cos 60^{\circ}}{\sin 30^{\circ}}$	$-\sqrt{3}$	$-\frac{1}{2}$	$\frac{1}{2}$	$\sqrt{3}$

Упростите тригонометрические выражения

$$(1-\cos\alpha)(1+\cos\alpha)$$

$$\cos^2 \alpha \cos^2 \alpha \sin^2 \alpha$$

$$\cos^{\frac{b-2\sin^2\alpha}{\alpha}}_{2\cos^2\alpha} \left(\frac{1-\alpha}{\alpha} tg^2\alpha \right)$$

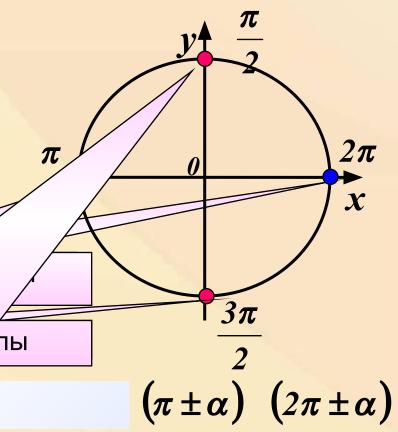
$$\frac{1-\sin^2\alpha}{\cos\alpha}$$

$$\frac{(\sin\alpha + \cos\alpha)^2}{1 + 2\sin\alpha \cdot \cos\alpha}$$

Формулы приведения

«Правило»

Определить знак функции в той четверти, которой принадлежит аргумент (угол считаем острым)


α

«Горизонтальные» – «спяр

«Вертикальные» – «рабочие» углы

Не изменяем функцию, если аргумент

Название функции меняем на кофункцию, если аргумент

$$\left(\frac{\pi}{2} \pm \alpha\right) \left(\frac{3\pi}{2} \pm \alpha\right)$$

Упростите выражение:

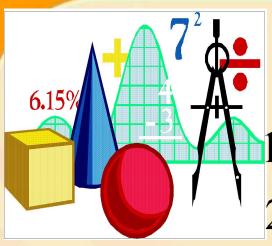
$$tg10^{\circ} \cdot tg20^{\circ} \cdot tg30^{\circ} \cdot tg40^{\circ} \cdot \dots \cdot tg80^{\circ}$$

Вычислите: $\frac{\sin 225^{\circ} \cos 290^{\circ} \operatorname{tg} 165^{\circ}}{\cot g 105^{\circ} \cos 60^{\circ} \sin 340^{\circ}}$

Формулы двойного угла

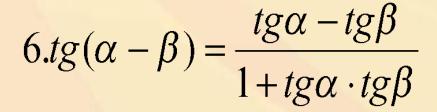
$$2.\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$

$$3.tg2\alpha = \frac{2tg\alpha}{1 - tg^2\alpha}$$



Вычислите:
$$\frac{2\sin\alpha + \sin2\alpha}{2\sin\alpha - \sin2\alpha}$$
 , еслиоѕ $\alpha = \frac{1}{5}$

Упростите:
$$\sqrt{2} \left(\sin^4 \frac{\pi}{8} - \cos^4 \frac{\pi}{8} \right)$$


Формулы сложения

 $1.\sin(\alpha + \beta) = \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta$ $2.\sin(\alpha - \beta) = \sin\alpha \cdot \cos\beta - \cos\alpha \cdot \sin\beta$

 $3.\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$

 $4.\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$

$$5.tg(\alpha + \beta) = \frac{tg\alpha + tg\beta}{1 - tg\alpha \cdot tg\beta}$$

Вычислите: sin 75°

Преобразуйте выражение:

$$\frac{\cos\frac{\pi}{30} \cdot \cos\frac{\pi}{15} + \sin\frac{\pi}{30} \cdot \sin\frac{\pi}{15}}{\sin\frac{7\pi}{30} \cdot \cos\frac{4\pi}{15} + \cos\frac{7\pi}{30} \cdot \sin\frac{4\pi}{15}}$$

Формулы половинного угла

$$\sin^2 \frac{\alpha}{2} = \frac{1 - \cos \alpha}{2};$$

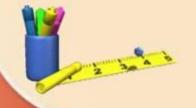
$$\cos^2 \frac{\alpha}{2} = \frac{1 + \cos \alpha}{2}.$$

$$\operatorname{tg} \frac{\alpha}{2} = \frac{\sin \alpha}{1 + \cos \alpha}$$

$$\operatorname{tg} \frac{\alpha}{2} = \frac{1 - \cos \alpha}{\sin \alpha}$$

Формулы понижения степени

$$\cos 2x = 1 - 2\sin^2 x$$


$$\cos 2x = 2\cos^2 x - 1$$

Выразим $sin^2 x$

Выразим $cos^2 x$

$$\sin^2 x = \frac{1 - \cos 2x}{2}$$

$$\cos^2 x = \frac{1 + \cos 2x}{2}$$

Вычислите: $\sin^4\alpha + \cos^4\alpha$, если $\cos 2\alpha = 5/13$

Вычислите:

$$\sin^2\frac{\pi}{8} + \cos^2\frac{3\pi}{8} + \sin^2\frac{5\pi}{8} + \cos^2\frac{7\pi}{8}$$

Преобразование сумм тригонометрических функций в произведение

$$\sin x + \sin y = 2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}$$

$$\sin x - \sin y = 2 \sin \frac{x - y}{2} \cos \frac{x + y}{2}$$

$$\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}$$

$$\cos x - \cos y = -2\sin \frac{x+y}{2} \sin \frac{x-y}{2}$$

Упростите: $\frac{\sin 5\alpha - \sin 3\alpha}{\cos 5\alpha + \cos 3\alpha}$

Упростите:
$$\frac{\cos(\alpha + 32^{\circ}) + \cos(\alpha - 28^{\circ})}{\sin(88^{\circ} - \alpha)}$$

Преобразование произведений тригонометрических функций в суммы

$$\cos x \cdot \cos y = \frac{1}{2} (\cos(x - y) + \cos(x + y))$$

$$\sin x \cdot \sin y = \frac{1}{2} (\cos(x-y) - \cos(x+y))$$

$$\sin x \cdot \cos x = \frac{1}{2} \left(\sin(x - y) + \sin(x + y) \right)$$

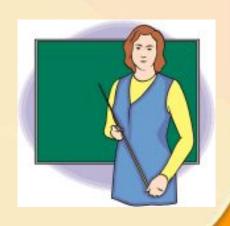
Вычислите: sin4°·sin86° – cos2°·sin6° + sin4°

Вычислите:

$$\cos^2 3^\circ + \cos^2 1^\circ - \cos 4^\circ \cos 2^\circ$$
;

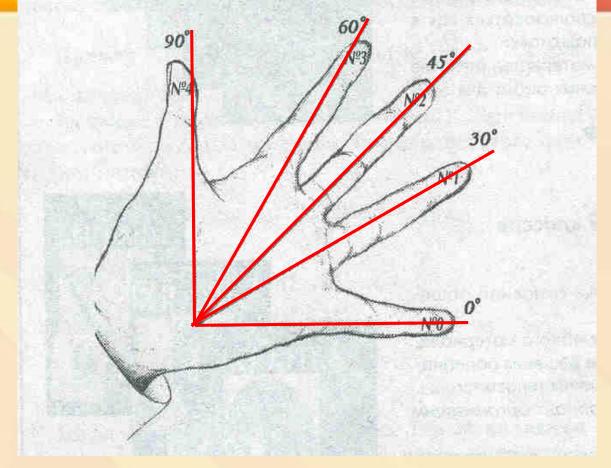
Формулы универсальной подстановки

$$\sin \alpha = \frac{2 \operatorname{tg} \frac{\alpha}{2}}{1 + \operatorname{tg}^2 \frac{\alpha}{2}} \qquad \cos \alpha = \frac{1 - \operatorname{tg}^2 \frac{\alpha}{2}}{1 + \operatorname{tg}^2 \frac{\alpha}{2}} \qquad \operatorname{tg} \alpha = \frac{2 \operatorname{tg} \frac{\alpha}{2}}{1 - \operatorname{tg}^2 \frac{\alpha}{2}}$$



$$\frac{2\sin\alpha - 3\cos\alpha}{4\sin\alpha + 5\cos\alpha}$$

$$\sec^{\frac{\alpha}{2}} = 3$$



Правильно выбранная формула часто позволяет существенно упростить решение, поэтому весь изученный материал данной темы стоит держать в зоне своего внимания. Знания, умения, навыки полученные в процессе работы гарантируют успешное выполнение соответствующих заданий

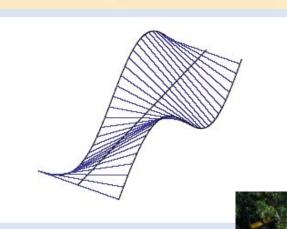
Это интересно

Тригонометрия в ладони

№0 Мизинец 00

№1 Безымянный 30⁰

№2 Средний 45⁰


№3 Указательный 60⁰

№4 Большой 90⁰

$$\sin \alpha = \frac{\sqrt{n}}{2}$$

Тригонометрия и ее применение в различных сферах науки и жизни

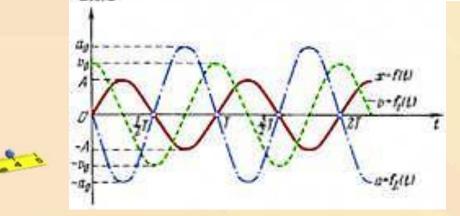
$$z = kx \sin \frac{y}{a}$$
 , k=1, a=1

В архитектуре

Детская школа Гауди в Барселоне

Сантьяго Калатрава Винодельня «Бодегас Исиос»

Феликс Кандела Ресторан в Лос-Манантиалесе

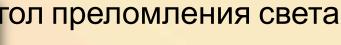


Тригонометрия в

Колебанда изменения физических величин происходят по закону косинуса или синуса (гармоническому закону), называются гармоническими колебаниями.

$$x = x_m \cos(\omega t + \varphi_0)$$
 $x = x_m \sin(\omega t + \varphi'_0)$

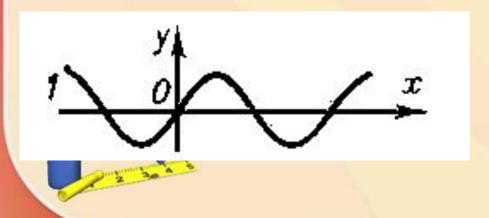
Выражение, стоящее под знаком косинуса или синуса, называется фазой $\kappa \phi = \omega t + \phi_0$

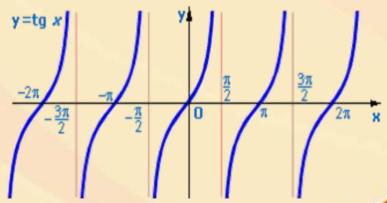

Теория радуги

$$\frac{\sin \alpha}{\sin} = \frac{n_1}{n_2}$$

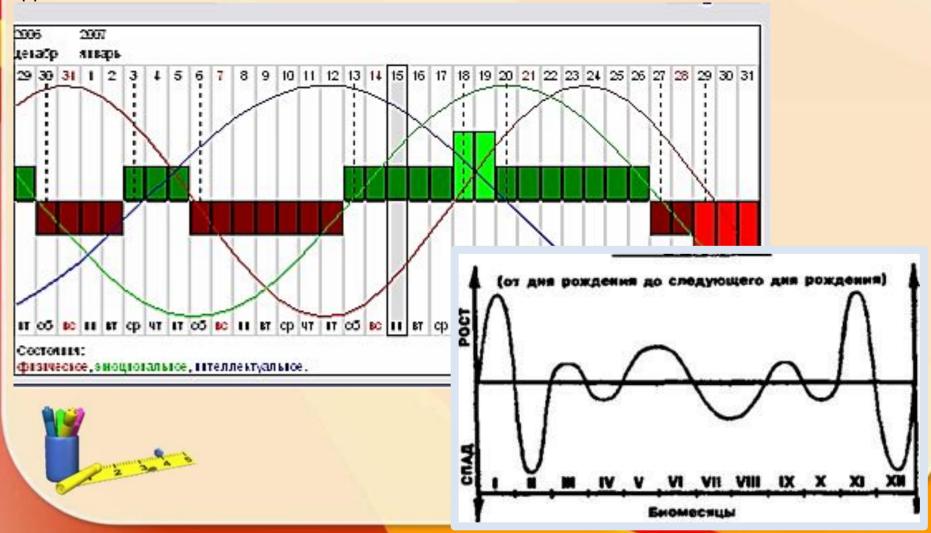
n₁ - показатель преломпления первой среды

n₂ - показатель преломления второй среды


$$F = q \left[\bigcup_{v \in B} \right] = q v B \sin \alpha$$



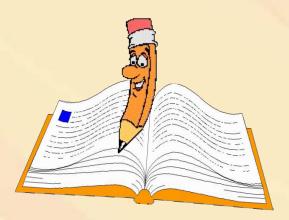
Тригонометрия в биологии





Биоритмы

Экологические ритмы : суточные, сезонные (годовые), приливные и лунные циклы


Физиологические ритмы: ритмы давления, биения сердца, артериальное давление.

Домашнее задание

- Повторите все формулы обязательно!!!
- Приготовьтесь к тестированию!!!

Спасибо за урок.

Упростите:
$$\frac{\operatorname{ctg}^2 2\alpha - 1}{2\operatorname{ctg} 2\alpha} - \cos 8\alpha \cdot \operatorname{ctg} 4\alpha$$

Упростите: $\frac{(\sin 10^{\circ} + \sin 80^{\circ})(\cos 80^{\circ} - \cos 10^{\circ})}{\sin 70^{\circ}}$

Вычислите
$$\sin^4 \alpha - \cos^4 \alpha$$
, если $tg \frac{\alpha}{2} = \frac{1}{2}$

