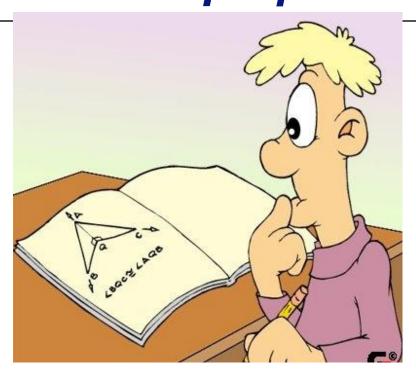
Тема занятия: Логарифмы. Свойства логарифмов. Десятичные и натуральные логарифмы.

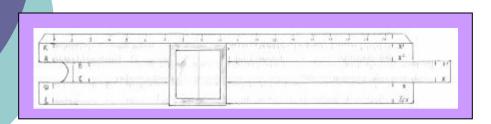


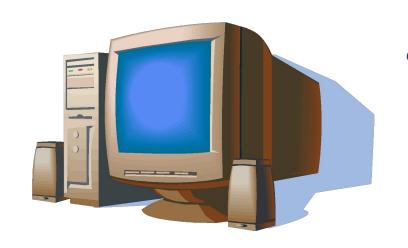
Лекция по дисциплине «Математика» для студентов 1 курса Преподаватель: Федорова Э.Р.

Изобретение логарифмов, сократив работу астронома, продлило ему жизнь.

П.С. Лаплас

Изобретение логарифмов





Уже в 1623 г., т. е. всего через 9 лет после издания первых таблиц, английским математиком **Д. Гантером** была изобретена первая логарифмическая линейка, ставшая рабочим инструментом для многих поколений.

Вплоть до самого последнего времени, когда на наших глазах повсеместное распространение получает электронная вычислительная техника и роль логарифмов как средств вычислений резко снижается.

Историческая справка

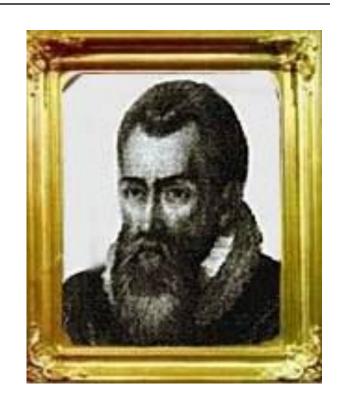
- Термин «ЛОГАРИФМ» предложил Дж. Непер; он возник из сочетания греческих слов logos (здесь отношение) и arithmos (число); в античной математике квадрат, куб и т. д. отношения а/b называются «двойным», «тройным» и т. д. отношением.
- Таким образом, для Непера слова «lógu arithmós» означали «число (кратность) отношения», то есть логарифм у Дж. Непера вспомогательное число для измерения отношения двух чисел.

Историческая справка

- о Термин «натуральный логарифм» принадлежит Н. Меркатору.
- о «Характеристика» английскому математику Г. Бригсу
- о *«Мантисса»* в нашем смысле логарифм Леонарду Эйлеру
- о «Основание» логарифма Леонарду Эйлеру
- о Понятие о *модуле* перехода ввёл Н. Меркатор.
- **Современное определение логарифма впервые дано английским математиком В. Гардинером (1742).**
- Знак логарифма результат сокращения слова «ЛОГАРИФМ» встречается в различных видах почти одновременно с появлением первых таблиц [напр., Log у И. <u>Кеплера</u> (1624) и Г. Бригса (1631), log и 1. Б. <u>Кавальери</u>(1632, 1643)].

Портретная галерея

- о Шотландский математик, изобретатель логарифмов.
- Учился в Эдинбургском университете. Основными идеями учения о логарифмах Непер овладел не позднее 1594 г., однако его "Описание удивительной таблицы логарифмов", в котором изложено это учение, было издано в 1614 г.
- В этом труде содержались определение логарифма, объяснение их свойств, таблицы логарифмов синусов, косинусов, тангенсов и приложения логарифмов в сферической тригонометрии.
- В "Построении удивительной таблицы логарифмов" (опубликовано в 1619) Непер изложил принцип вычисления таблиц.



Непер Джон (1550 - 1617)

Рассмотрим уравнения:

решить уравнение $3^{x} = 81$.

$$3^x = 3^4$$

$$x = 4$$

Ответ: 4.

 $Уравнение 3^x = 80$

таким способом решить не удается.

Однако это уравнение имеет корень.

Чтобы уметь решать такие уравнения, вводится понятие логарифма числа.

Определение логарифма

Логарифмом положительного числа b по основанию а, где a>0, a≠0 называют показатель степени, в которую нужно возвести число а, чтобы получить число b.

Определение логарифма можно кратко записать так: $a^{\log_a b} = b$

Основное логарифмическое тождество

Это равенство справедливо при b>0,a>0,a≠1. Его называют основным логарифмическим тождеством.

$$a^{\log_a b} = b$$

Действие нахождения логарифма числа называют логарифмированием.

Определение логарифма на языке символов:

$$1. a^{\log_a b} = b$$

2.
$$\log_a b = p$$
:

$$\begin{cases} a \rangle 0, a \neq 1; \\ b \rangle 0; \\ a^p = b. \end{cases}$$

Примеры нахождения логарифмов

пример 1.

вычислить $\log_2 8$.

 $nycmb \log_2 8 = x, moгдa$

$$2^{x} = 8$$

$$2^x = 2^3$$

$$x = 3$$

Omeem : $\log_2 8 = 3$.

пример 2.

вычислить $\log_{64} 128$.

nycmь $log_{64} 128 = x$, $mor \partial a$

$$64^x = 128$$

$$2^{6x} = 2^7$$

$$6x = 7$$

$$x = \frac{7}{6}$$

Omeem:
$$\log_{64} 128 = \frac{7}{6} = 1\frac{1}{6}$$
.

Примеры нахождения логарифмов

пример 3.

вычислить $\log_3 \frac{1}{27}$.

 $nycmь \log_3 \frac{1}{27} = x, moгдa$

$$3^x = \frac{1}{27}$$

$$3^x = 3^{-3}$$

$$x = -3$$

Omeem: $\log_3 \frac{1}{27} = -3$.

пример 4.

вычислить $\log_{\frac{1}{z}} 25$.

nycmь $\log_{\frac{1}{5}} 25 = x$, $mor\partial a$

$$\left(\frac{1}{5}\right)^x = 25$$

$$\left(\frac{1}{5}\right)^x = 5^2$$

$$\left(\frac{1}{5}\right)^x = \left(\frac{1}{5}\right)^{-2}$$

$$x = -2$$

Ombem : $\log_{\frac{1}{2}} 25 = -2$.

Задания на закрепление

Решить следующие задание по данной теме:

по учебнику № 267-271.

Свойства, следующие из определения логарифма

• 1.
$$\log_a a = 1;$$
 $a^1 = a.$

• 2.
$$\log_a 1 = 0$$
; $a^0 = 1$.

o 3.
$$\log_a a^c = c; \quad a^c = a^c.$$

Взаимосвязь операции возведения в степень и логарифмирования

- о Возведение в степень
- Логарифмирование

$$7^2 = 49;$$

$$\log_7 49 = 2$$
.

$$10^3 = 1000;$$

$$\log_{10} 1000 = 3$$
.

$$0,2^5 = 0,0032;$$

$$\log_{0.2} 0,00032 = 5.$$

$$5^{-3} = \frac{1}{125};$$

$$\log_5 \frac{1}{125} = -3.$$

Свойства логарифмов

Пусть a>0, a≠1, b>0, c>0, r – любое действительное число. Тогда справедливы формулы:

$$\log_a(b \cdot c) = \log_a b + \log_a c$$
 (1)

$$\log_a \frac{b}{c} = \log_a b - \log_a c \tag{2}$$

$$\log_a b^r = r \cdot \log_a b \tag{3}$$

Свойства логарифмов

$$a^{\log_a b + \log_a c} = b \cdot c \tag{4}$$

$$a^{\log_a b - \log_a c} = \frac{b}{c} \tag{5}$$

Некоторые особые обозначения

 \circ Логарифм по основанию 10 обычно называют десятичным логарифмом и используют символ \lg , $\lg 3,4; \lg 5; \lg b$

 \bigcirc

о В математике и технике большее применение имеют логарифмы, основанием которых служит особое число e и используют символ $\ln 25$; $\ln x$.

Устная контрольная работа

Найдите логарифм следующих чисел по основанию 3:

9; 1; 1/27;

2. Найдите числа, логарифмы которых по основанию 3, равны:

0;

-1; 3; -2.

3. При каком основании логарифм числа 1/16 равен:

2; 4; -1?

4. Вычислите:

 $\log_2 8;$ $\log 0.01;$

 $\log_{\frac{1}{2}}\frac{1}{25};$

 $\log_{\sqrt{2}} 8$.

5. Имеет ли смысл выражение:

 $\log_4(-16); \quad \log_2(3-2\sqrt{2}); \quad \sqrt{\log_{\frac{1}{2}}9}; \quad \log_{0,5}\cos\frac{\pi}{3}.$

Проверка

1	2	0	-3	1/2
2	0	1/3	27	1/9
3	1/16	1/4	1/2	16
4	3	-2	2	6
5	нет	да	нет	да

Основные результаты

- * Ввели обозначение для записи корня уравнения вида $a^{x} = b$.
- Пополнили словарный запас математического языка:
- логарифм числа, основание логарифма;
- десятичный логарифм, натуральный логарифм.
- \bullet Ввели новые обозначения: $\log_a b$; $\lg c$; $\ln k$.
- Научились вычислять значения логарифма.

Используемая литература

- Алгебра и начала анализа: Учеб. Для 10-11 кл. общеобразоват. учреждений/ Ш.А. Алимов, Ю.М.Колягин, Ю. В.Сидоров, и др.-12 изд.- М.: Просвещение, 2004.
- 2. http://webmath.exponenta.ru/s/kiselev1/node65.htm
- 3. Алгебра и начала анализа. 10 класс:Поурочные планы (по учебнику Ш.А. Алимова и др.) Ч 1/ Авт-сост. Г.И. Григорьева Волгоград: Учитель, 2004- 160 с.