Тригонометрические уравнения. Отбор корней.

Алгебра 10 класс

Подготовка к решению заданий С1

Что необходимо знать для решения тригонометрических уравнений? • Принципы решения (формулы для

- Принципы решения (формулы для решения простейших уравнений).
- Управлять преобразованиями с использованием формул.
- Пользоваться единичной окружностью для отбора корней.

Цель

Научиться объединять умения в одно решение.

Задачи

- Закрепить использование формул для решения простейших уравнений.
- Узнавать ситуации для использования формул преобразования.
- Отрабатывать навык отбора корней на единичной окружности.
- Использовать способ ограничений для проверки правильности отбора корней.

Каждому уравнению поставьте в соответствие номер правильного ответа.

A)
$$\sin x = -\frac{\sqrt{2}}{2}$$

$$\mathsf{5)cos}\,\mathsf{x=-\frac{\sqrt{2}}{2}}$$

B)tg
$$x = -1$$

$$\Gamma$$
)ctg x = -1

1)
$$x = -\frac{\pi}{4} + \pi n, n \in \mathbb{Z}$$

2)
$$x = \frac{3\pi}{4} + \pi n, n \in \mathbb{Z}$$

3)
$$x = \pm \frac{3\pi}{4} + 2\pi n, n \in \mathbb{Z}$$

Ответ: 4312

На единичной окружности отметьте точки соответствующие углам, которые обладают следующими свойствами:

1)
$$\sin \alpha = \frac{1}{2}$$
, 2) $\sin \alpha = -\frac{\sqrt{2}}{2}$, 3) $\sin \alpha = 0$,

4)
$$\cos \alpha = \frac{1}{2}$$
, 5) $\cos \alpha = -\frac{\sqrt{3}}{2}$, 6) $\cos \alpha = 0$,

7) tg
$$\alpha = 1$$
, 8) tg $\alpha = \sqrt{3}$, 9) tg $\alpha = -\frac{\sqrt{3}}{3}$.

Упражнение 1. Решите уравнение $\sin 2x + \cos 2x = 1$. Найдите корни этого уравнения, принадлежащие промежутку $\left[\frac{\pi}{6}; 2\pi\right]$.

Решение.

 $2\sin x \cos x + \cos^2 x - \sin^2 x - 1 = 0;$

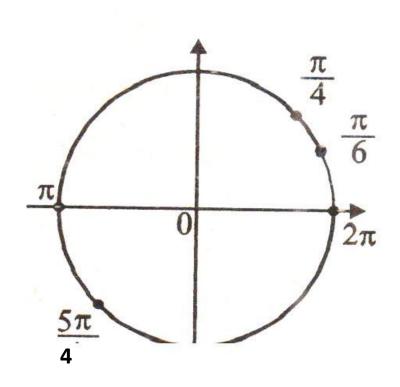
 $2\sin x \cos x - 2\sin^2 x = 0$;

 $\sin x (\cos x - \sin x) = 0;$

1)sin x=0; x= π k, k \in Z.

2)
$$\sin x = \cos x$$
; $\tan x = 1$; $\tan x = \frac{\pi}{4} + \pi n$, $\tan x = \frac{\pi}{4}$

Отберём корни, принадлежащие промежутку $\left[\frac{\pi}{6}; 2\pi\right]$.



$$\frac{\pi}{4}$$
; π ; $\frac{5\pi}{4}$; 2π

Проверим отбор корней с помощью ограничений.

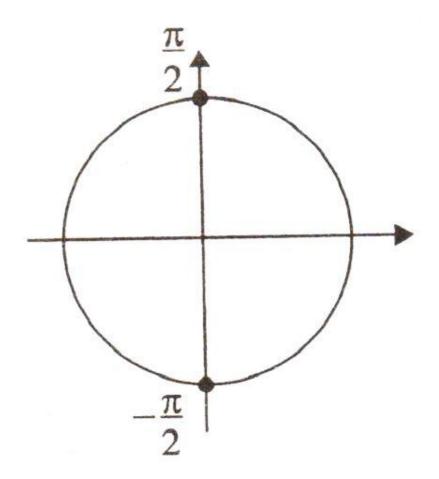
1)
$$x=\pi k$$
, $k \in \mathbb{Z}$: $\frac{\pi}{6} \le \pi k \le 2\pi$; $\frac{1}{6} \le k \le 2$; $k=1$, $k=2$; $x_1=\pi$; $x_2=2\pi$.
2) $x=\frac{\pi}{4}+\pi n$, $n \in \mathbb{Z}$: $\frac{\pi}{6} \le \frac{\pi}{4}+\pi n \le 2\pi$; $\frac{1}{6} \le \frac{1}{4}+n \le 2$; $-\frac{1}{12} \le n \le 1\frac{3}{4}$; $n=0$, $n=1$; $x_3=\frac{\pi}{4}$; $x_4=\frac{5\pi}{4}$.
Otbet: a) $x=\pi k$, $k \in \mathbb{Z}$; $x=\frac{\pi}{4}+\pi n$, $n \in \mathbb{Z}$; (6) $\frac{\pi}{4}$; (7) $($

Упражнение 2. Решите уравнение $\cos 3x = 2\sin \left(\frac{3\pi}{2} + x\right)$. Найдите корни этого уравнения, принадлежащие промежутку $\left(-\frac{3\pi}{2};0\right]$.

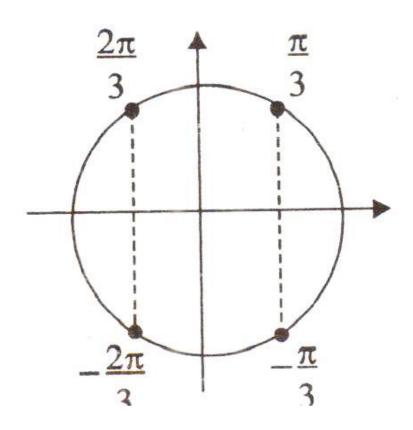
Упростим $\cos 3x = \cos(2x + x) = \cos 2x \cos x$ - $\sin 2x \sin x = (\cos^2 x - \sin^2 x) \cos x$ $2\sin^2 x \cos x = (2\cos^2 x - 1)\cos x$ $2\cos x(1-\cos^2 x)=4\cos^3 x-3\cos x$. Получим уравнение: $4\cos^3 x$ - $3\cos x = -2\cos x$, $\cos x (4\cos^2 x - 1) = 0$ $\cos x = 0$ или $\cos^2 x = \frac{1}{4}$; $(\cos x = \pm \frac{1}{2})$ 1) $x = \frac{\pi}{2} + \pi n, n \in \mathbb{Z};$ 2) $x = \pm \frac{\pi}{3} + \pi k, k \in \mathbb{Z}$

1)
$$\cos x = 0;$$

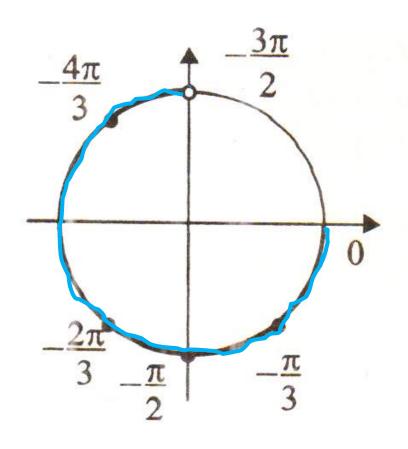
 $x = \frac{\pi}{2} + \pi n, n \in \mathbb{Z};$



2)
$$\cos x = \pm \frac{1}{2}$$
;
 $x = \pm \frac{\pi}{3} + \pi k, k \in \mathbb{Z}$



Отбор корней с помощью окружности



Ответ:

$$-\frac{4\pi}{3}$$
; $-\frac{2\pi}{3}$; $-\frac{\pi}{2}$; $-\frac{\pi}{3}$.

Самостоятельное решение

Решите уравнение:

$$\sin(3\pi - 2x) + 1 = \cos\left(\frac{\pi}{2} - x\right) - \cos(\pi - x).$$

Домашнее задание

- №21.29, c.61
- Определите некоторые промежутки, на которых решённые уравнения не имеют корней.