

методическое пособие по алгебре для учащихся 9 класса

г. Старый Оскол

- Рассмотрим **первое свойство** функции точка пересечения графика функции с осями координат:
- ***** Точка пересечения с осью Оу равна значению функции y(x) при x = 0.
- ❖ Точки пересечения с осью Ох являются корнями уравнения у
 (x) = 0 и называются нулями функции.
- ◆ Второе свойство ограниченность функции.
- **♦ Третье свойство** монотонность (т.е. возрастание или убывание функции). ■

И наконец, рассмотрим еще одно свойство функции — четность. Предварительно введем еще одно понятие — симметричность области определения. Область определения называется симметричной, если функция определена и в точке x_0 , и в точке $(-x_0)$ (т. е. в точке, симметричной x_0 относительно начала числовой оси).

Понятие четности функции вводится только для функции с симметричной областью определения. Функция называется четной, если при изменении знака аргумента, значение функции не меняется, т. е. y(-x) = y(x). График четной функции всегда симметричен относительно оси ординат.

Функция называется нечетной, если при изменении знака аргумента, значение функции также меняется на противоположное, т. е. y(-x) = -y(x). График нечетной функции всегда симметричен относительно начала координат.

Пример 1

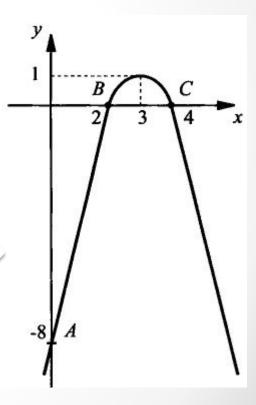
Рассмотрим функцию $y(x) = -x^2 + 6x - 8$.

Найдем точки пересечения графика этой функции с осями координат. Чтобы определить точку пересечения графика с осью ординат, вычислим значение функции y(x) при x = 0: $y(0) = -0^2 + 6 \cdot 0 - 8 = -8$. Получаем координаты этой точки A(0; -8).

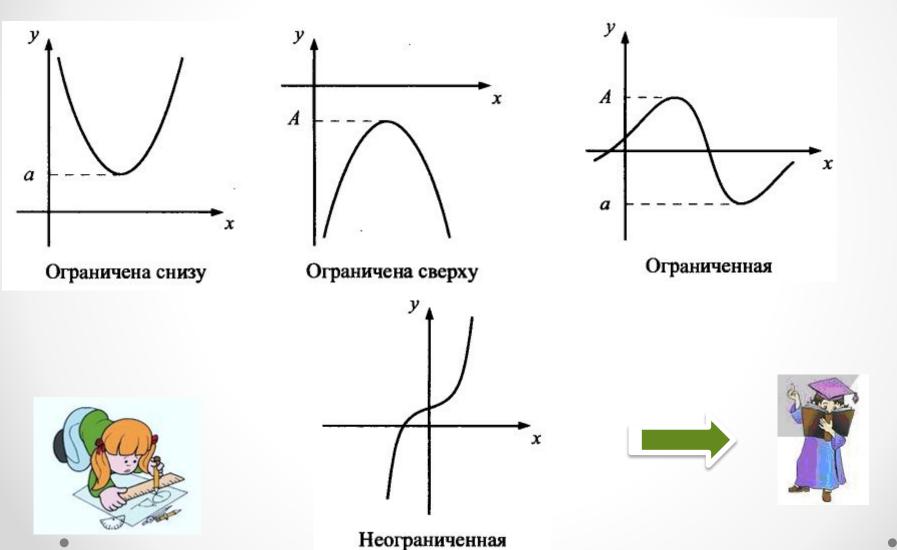
Теперь определим точки пересечения графика данной функции с осью абсцисс. Для этого в функцию $y = -x^2 + 6x - 8$ подставим значение y = 0 и получим квадратное уравнение $0 = -x^2 + 6x - 8$, или $0 = x^2 - 6x + 8$.

Решим его:
$$x_{1,2} = \frac{6 \pm \sqrt{36 - 4 \cdot 1 \cdot 8}}{2} = \frac{6 \pm \sqrt{4}}{2} = \frac{6 \pm 2}{2}$$
, т. е. $x_1 = 2$, $x_2 = 4$.

Поэтому график функции пересекает ось абсцисс в двух точках: B(2; 0) и C(4; 0).



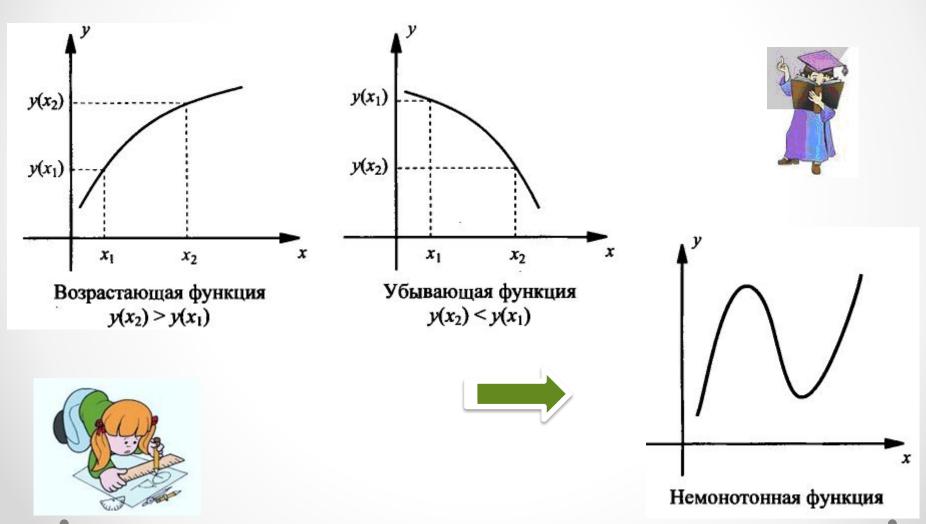
Функция называется ограниченной снизу, если все значения функции не меньше некоторого числа a ($m.e.y(x) \ge a$). Функция называется ограниченной сверху, если все значения функции не больше некоторого числа A (т.е. y (x) $\le A$). Если функция ограничена снизу и сверху, то она называется ограниченной.



Гулова Р.И., учитель математики, МБОУ "СОШ №12 с УИОП"

Монотонность функции.

Функция называется возрастающей, если большему значению аргумента соответствует большее значение функции (т.е. если $x_2 > x_1$ то $y(x_2) > y(x_1)$). Функция называется убывающей, если большему значению аргумента соответствует меньшее значение функции (т.е. если $x_2 > x_1$ то $y(x_2) < y(x_1)$).



Гулова Р.И., учитель математики, МБОУ "СОШ №12 с УИОП"

• Пример 2. Выясним четность функций:

- $y = |x| x^2$,
- $y = x x^3$,
- y=x-2.

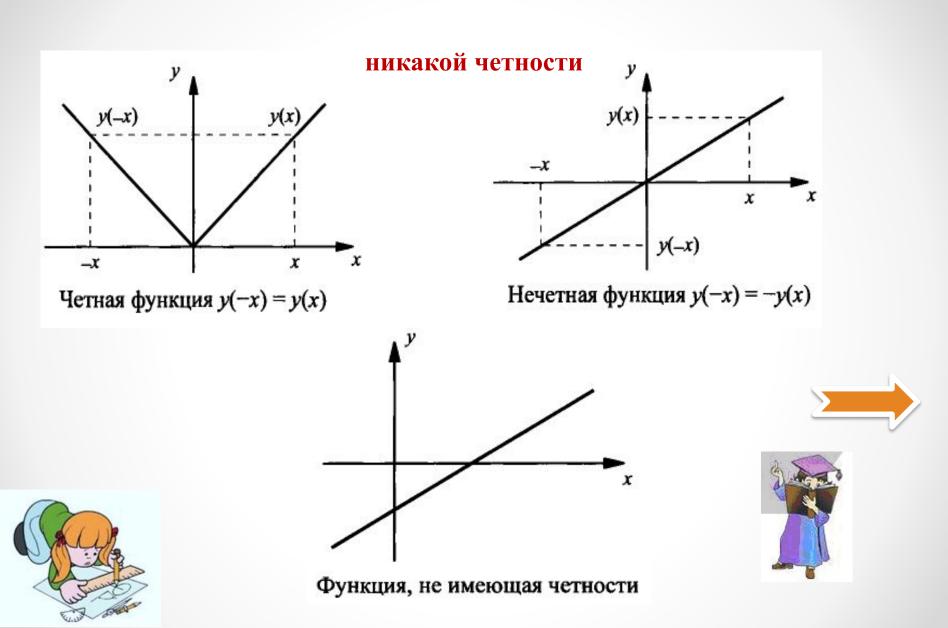
Прежде всего отметим, что области определения всех трех функций $x \in (-\infty; +\infty)$ симметричны. Для выяснения четности этих функций y(x) надо найти значение y(-x) и сравнить значения y(x) и y(-x).

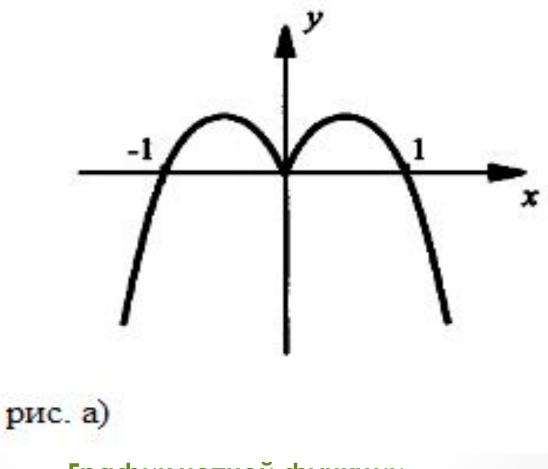
а) $y(-x) = |-x| - (-x)^2 = |x| - x^2$ (здесь учтено, что |-x| = |x| и $(-x)^2 = x^2$). Теперь легко видеть, что y(-x) совпадает с данной функцией y(x), т. е. y(-x) = y(x). Поэтому данная функция четная и ее график симметричен относительно оси ординат.

б) $y(-x) = -x - (-x)^3 = -x - (-x)^3 = -x + x^3 = -(x - x^3) = -y(x)$. Видно, что значения функции в точках x и -x противоположны по знаку, x, y(-x) = -y(x). Поэтому данная функция нечетная и ее график симметричен относительно начала координат.

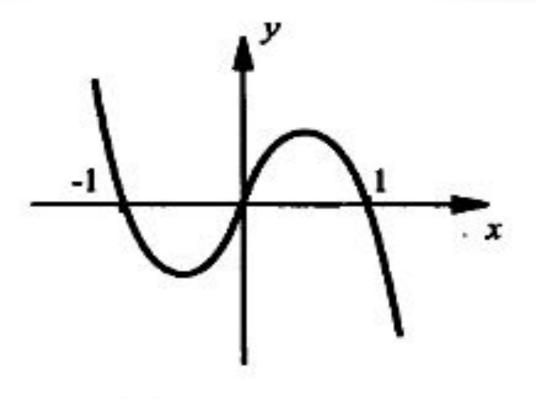
в) y(-x) = -x - 2. Сравнивая значение -y(x) = -x - 2 со значением y(x) = x - 2, видим, что равенство y(-x) = y(x) не выполняется. Поэтому эта функция не является четной. Найдем теперь величину -y(x) = -(x-2) = 2 - x. Сравнивая значение y(-x) = -x - 2 со значением -y(x) = 2 - x, видим, что равенство y(-x) = -y(x) также не выполняется. Поэтому эта функция не является нечетной.

Графики четной, нечетной функции и функции, не имеющей





Гулова Р.И., учитель математики, МБОУ "СОШ №12 с УИОП"



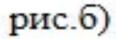
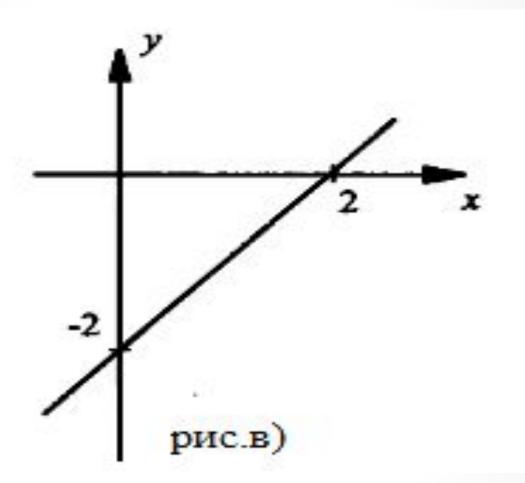


График нечетной функции

Гулова Р.И., учитель математики, МБОУ "СОШ №12 с УИОП"



Данная функция никакой четности не имеет и ее график не обладает никакой симметрией

ассмотрим основные свойства и графики некоторых ранее изученных функций

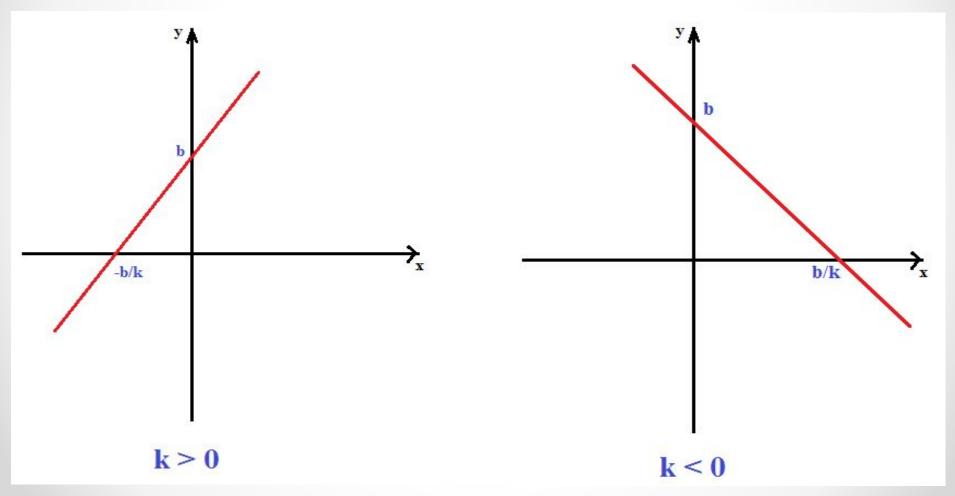
Линейная функция y = kx + b

- 1. Область определения множество всех чисел.
- 2. Графиком функции является прямая линия.
- 3. График функции пересекает ось абсцисс в точке $x = -\frac{b}{k}$ (при $k \neq 0$)

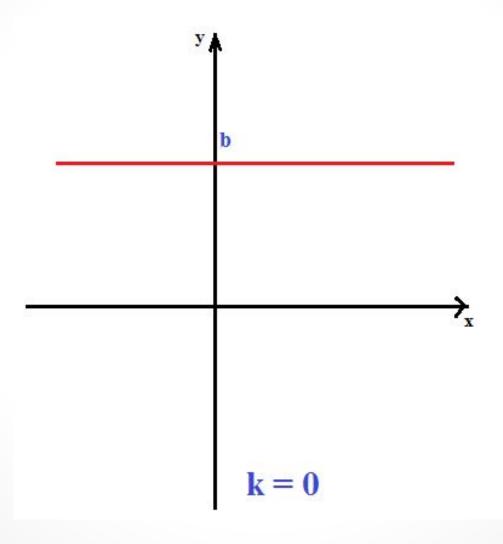
и параллелен оси абсцисс при k=0. График функции пересекает ось ординат в точке y=b.

- 4. Функция возрастает при k > 0, убывает при k < 0 и постоянна при k = 0.
 - 5. Функция неограниченная при $k \neq 0$ и ограниченная при k = 0.
- 6. Функция определенной четности не имеет при $b \neq 0$, нечетная при b = 0 и четная при k = 0.
- 7. Область значений множество всех чисел при $k \neq 0$ и y = b при k = 0.
- 8. При b = 0 функцию y = kx называют прямой пропорциональностью.

Линейная функция y = kx + b



Свойства и графики элементарных функций Линейная функция y = kx + b



Свойства и графики элементарных функций Линейная функция y = kx + b

Пример

Найти условие, при котором линейная функция y = kx + b является: а) нечетной; б) четной.

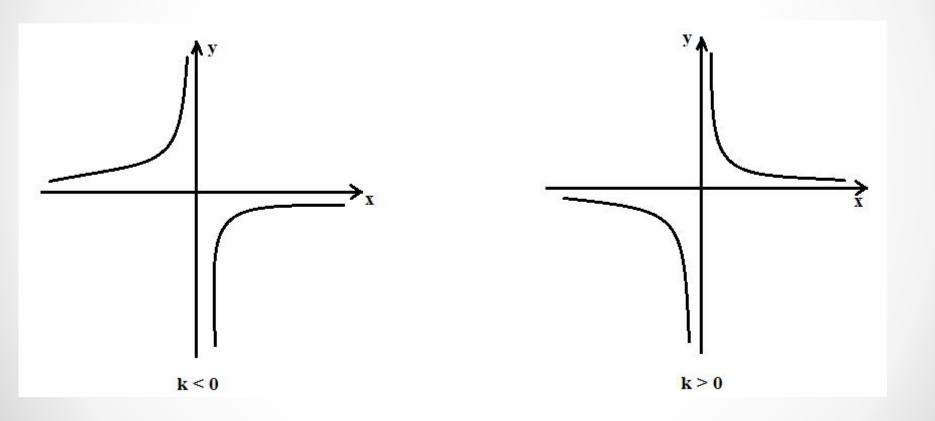
Область определения функции $x \in (-\infty; +\infty)$ — симметричная. Найдем значение $y(-x) = k \cdot (-x) + b = -kx + b$.

- а) Если функция нечетная, то $y(\neg x) = \neg y(x)$. Получаем: $\neg kx + b = \neg (kx + b)$, или $b = \neg b$, или 2b = 0, откуда b = 0.
- б) Если функция четная, то y(-x) = y(x). Получаем: -kx + b = kx + b, или 0 = 2kx, откуда k = 0 (т. к. x -любое число, не равное нулю).

Свойства и графики элементарных функций Обратная пропорциональность у = k/х

- 1. Область определения множество всех чисел, кроме нуля.
- 2. Графиком функции является гипербола.
- 3. График функции осей координат не пересекает.
- 4. Функция возрастает при k < 0 и убывает при k > 0 в области определения.
- 5. Функция неограниченная.
- 6. Функция нечетная.
- 7. Область значений множество всех чисел, кроме нуля.

Свойства и графики элементарных функций Обратная пропорциональность у = k/х



Пример

Выясним монотонность обратной пропорциональности $y = \frac{k}{x}$.

Область определения данной функции $D(y)=(-\infty;0)\cup(0;+\infty)$. Рассмотрим два произвольных значения x_1 и x_2 (где $x_1>x_2$) из области определения функции. Найдем значения функции в этих точках $y(x_1)=\frac{k}{x_1}$ и $y(x_2)=\frac{k}{x_2}$ и сравним их. Для этого рассмотрим разность $y(x_2)-y(x_1)=\frac{k}{x_2}-\frac{k}{x_1}=\frac{k(x_1-x_2)}{x_1x_2}$. Так как $x_2>x_1$, то разность x_1-x_2 отрицательна. Поэтому знак разности $y(x_2)-y(x_1)$ противоположен знаку дроби $\frac{k}{x_1x_2}$.

Функция $y = \frac{k}{x}$ не определена в точке x = 0. Рассмотрим два промежутка области определения. При $x_1, x_2 \in (-\infty; 0)$ и при $x_1, x_2 \in (0; +\infty;)$ произведение x_1x_2 положительно. Поэтому знак разности $y(x_2) - y(x_1)$ противоположен знаку коэффициента k. Следовательно, при k < 0 величина $y(x_2) - y(x_1) > 0$, т. е. $y(x_2) > y(x_1)$ и функция возрастает; при k > 0 величина $y(x_2) - y(x_1) < 0$, т. е. $y(x_2) < y(x_1)$ и функция убывает.

Свойства и графики элементарных функций Φ ункция $y = x^2$

Функция $y = x^2$ является частным случаем квадратичной функции.

- 1. Область определения множество всех чисел.
- 2. Графиком функции является парабола.
- 3. График функции $y = x^2$ проходит через начало координат.
- 4. Функция убывает на промежутке $(-\infty; 0]$ и возрастает на промежутке $[0; +\infty)$.
- 5. Функция ограничена снизу, т.е. Ү ≥ 0.
- 6. Функция четная.
- 7. Область значений промежуток $[0; +\infty)$.

Свойства и графики элементарных функций Кубическая функция $y = x^3$

- 1. Область определения множество всех чисел.
- 2. График специального названия не имеет.
- 3. График функции проходит через начало координат.
- **4.** Функция возрастает на промежутке $(-\infty; +\infty)$.
- 5. Функция неограниченная.
- 6. Функция нечетная.
- 7. Область значений множество всех чисел.

Свойства и графики элементарных функций Φ ункция $y = \sqrt{x}$

- 1. Область определения множество неотрицательных чисел.
- 2. График специального названия не имеет.
- 3. График выходит из начала координат.
- 4. Функция возрастает.
- 5. Функция ограничена снизу, т.е. у ≥ 0.
- 6. Функция определенной четности не имеет.
- 7. Область значений множество неотрицательных чисел.

Свойства и графики элементарных функций $\Phi_{\text{УНКЦИЯ}} \ \mathbf{y} = |\mathbf{x}|$

- 1. Область определения множество всех чисел.
- 2. График специального названия не имеет.
- 3. График функции y = |x| проходит через начало координат.
- 4. Функция убывает на промежутке $(-\infty; 0]$ и возрастает на промежутке $[0; +\infty)$.
- 5. Функция ограничена снизу, т.е. у ≥ 0.
- 6. Функция четная.
- 7. Область значений множество неотрицательных чисел.

Примеры построения графика более сложных функций

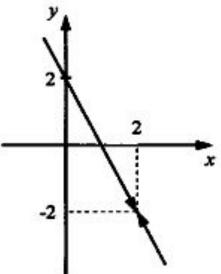
1

Построим график функции $y = \frac{4-x^2}{2-x} - 3x$.

Область определения функции — множество всех чисел, кроме x = 2.

Сократим дробь и запишем функцию в виде $y = \frac{(2-x)(2+x)}{2-x} - 3x =$

=2+x-3x=2-2x. Поэтому надо построить график линейной функции y=2-2x и удалить из него точку с абсциссой x=2 (показана стрелками).



Гулова Р.И., учитель математики, МБОУ "СОШ №12 с УИОП"

Примеры построения графика более сложных функций

Построим график функции y = 2x + |x - 3|.

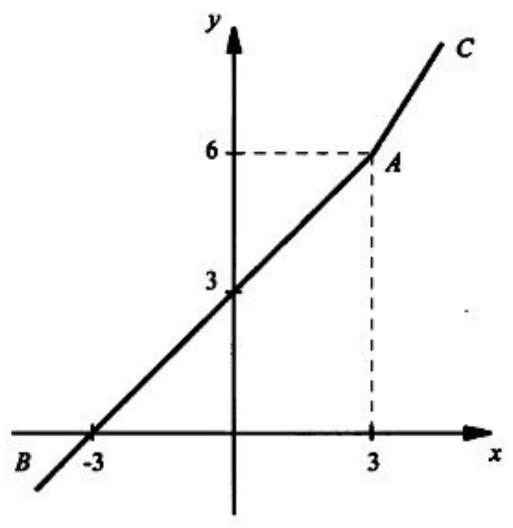
Раскроем знак модуля, рассмотрев два случая. При x - 3 < 0

получаем: y = 2x - (x - 3) = x + 3, при $x - 3 \ge 0$ имеем:

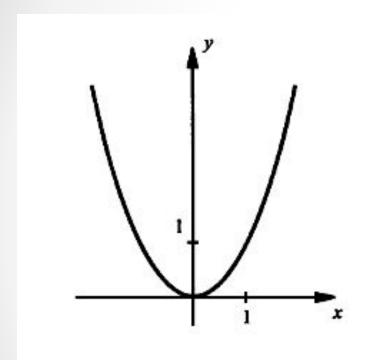
y = 2x + (x - 3) = 3x - 3. Таким образом, надо построить график

функции $y = \begin{cases} x+3 & \text{при } x < 3, \\ 3x-3 & \text{при } x \ge 3 \end{cases}$. Строим при x < 3 график пря-

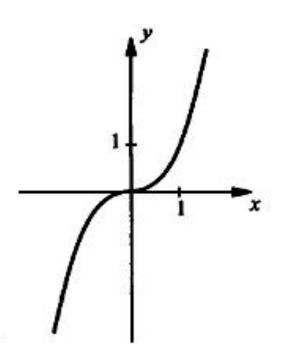
мой y = x + 3 (луч AB) и при $x \ge 3$ график прямой y = 3x - 3 (луч AC). Поэтому графиком данной функции будет ломаная BAC.



Гулова Р.И., учитель математики, МБОУ "СОШ №12 с УИОП"

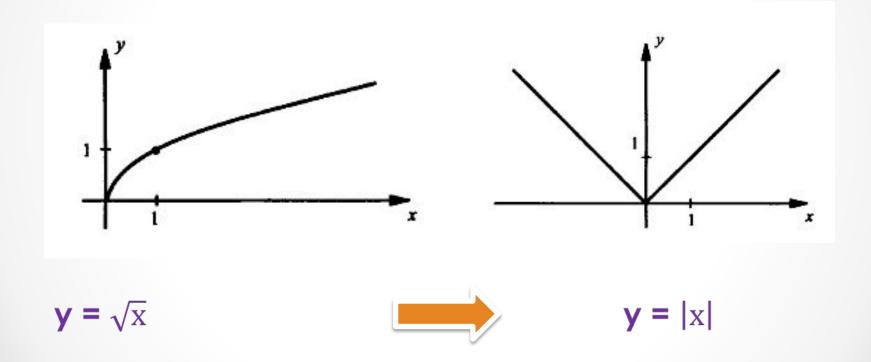


$$y = x^2$$



$$y = x^3$$

Свойства и графики основных функций



Свойства и графики основных функций

Контрольные вопросы

- 1. Как найти точки пересечения графика функции с осями координат?
- 2. Дайте понятие ограниченности функции.
- 3. Какая функция называется возрастающей, убывающей на промежутке?
- 4. Четная и нечетная функции и их свойства.
- 5. Свойства и график функции y = kx + b.
- 6. Свойства и график пропорциональности.
- 7. Свойства и график квадратичной функции.
- 8. Свойства и график кубической функции.
- 9. Свойства и график функции $y = \sqrt{x}$.
- 10. Свойства и график функции y = |x|.

Используемые материалы

- 1. Ю.Н.Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б.Суворова. Алгебра. Учебник для 9 класса общеобразовательных учреждений. М.: Просвещение, 2011.
- 2. Ю.Н.Макарычев, Н.Г.Миндюк, Л.Б. Крайнева. Алгебра. Дидактические материалы. 9 класс. – М: Просвещение, 2014.
- 3. А.Н.Рурукин, С.А.Полякова Поурочные разработки по алгебре 9 класс. -М: Просвещение, 2010.