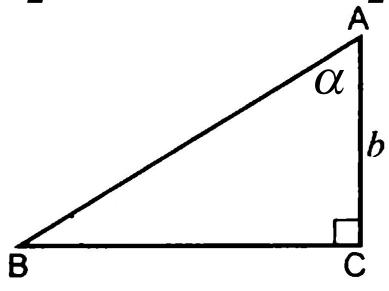

Урок геометрии в 8 классе с углубленным изучением математики

Автор разработки: учитель математики МБОУ СШ № 10 г. Павлово Леонтьева Светлана Ивановна

(Петроний- сатирик Древней Греции)

Геометрия приближает разум к истине

Платон



Теория: §4, п.66, выучить значения синуса, косинуса, тангенса углов 30°, 45°, 60°. Уметь выражать катеты и гипотенузу.

Проверить друг друга в паре, заполнив данные по теории в готовых карточках

Практика.Стр.159, №595

$$a). \angle B = 90^{\mathbb{Z}} - \alpha$$

$$tg\alpha = \frac{BC}{b}$$

$$BC = b \cdot tg\alpha$$

$$\cos \alpha = \frac{b}{AB}$$

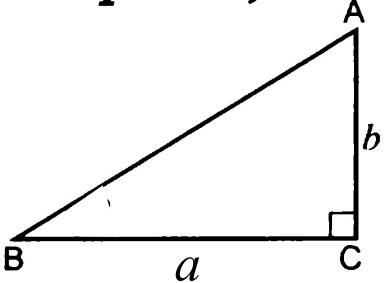
$$AB = \frac{b}{\cos \alpha}$$

$$b = 12 c$$
м и $\alpha = 42^{\mathbb{N}}$

Стр.159, №595 b = 12 cm и $\alpha = 42^{10}$

$$\rho = 12$$
см и $\alpha = 42^{\bowtie}$

б).
$$\angle B = 90^{10} - 42^{10} = 48^{10}$$


$$BC = 12 \cdot tg42^{\mathbb{Z}} = 12 \cdot 0,9004 \approx 10,8$$

$$AB = \frac{12}{\cos 42^{\mathbb{N}}} = \frac{12}{0,7431} \approx 16,15$$

Omeem: a) $90^{10} - \alpha$; $btg\alpha$; ——.

6)
$$48^{1}$$
; ≈ 10.8 ; ≈ 16.15 .

Cmp.159, №597

$$AB = \sqrt{a^2 + b^2}$$

$$tgA = \frac{a}{b}; \quad tgB = \frac{b}{a};$$

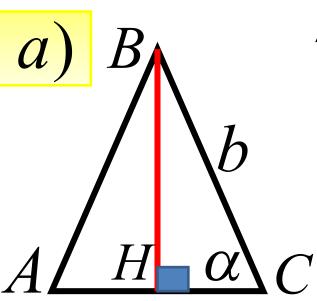
$$a = 12$$
 и $b = 15$

$$AB = \sqrt{12^2 + 15^2} = \sqrt{144 + 225} = \sqrt{369} = 3\sqrt{41} \approx 19$$

$$tgA = \frac{12}{15}; \quad tgB = \frac{15}{12}.$$

Cmp.159, №597

$$tgA = \frac{12}{15} = 0.8; \quad \angle A \approx 38^{1/3}9'$$


$$tgB = \frac{15}{12} = 1,25$$
 $\angle B \approx 51^{10}21'$

Omeem:
$$\sqrt{a^2+b^2}$$
; $\frac{a}{b}$; $\frac{b}{a}$;

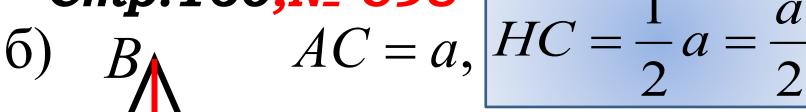
$$\approx 19$$
; $\approx 38^{\mathbb{Z}}39'$; $\approx 51^{\mathbb{Z}}21'$.

Cmp. 160, №598

Решение:

∆НВС- прямоугольный, т. к. ВН-высота

$$S_{ABC} = \frac{1}{2}AC \cdot BH$$


$$H \alpha C = 2HC; S_{ABC} = HC \cdot BH$$

$$cosC = \frac{HC}{RC}$$
; $cos\alpha = \frac{HC}{b} \Rightarrow HC = b \cdot \cos\alpha$

$$\sin C = \frac{BH}{BC}; \sin \alpha = \frac{BH}{b} \Rightarrow BH = b \sin \alpha$$

$$S_{ABC} = b^2 \cdot \sin \alpha \cdot \cos \alpha$$

Cmp.160,№ 598

$$S_{ABC} = HC \cdot BH$$
$$tgC = \frac{BH}{HC};$$

$$tg\alpha = \frac{BH}{\frac{a}{2}} \Rightarrow BH = \frac{a}{2} \cdot tg\alpha$$

$$S_{ABC} = \frac{a}{2} \cdot \frac{a}{2} \cdot tg\alpha = \frac{a^2}{4} tg\alpha$$

Cmp. 160, No. 598

$$AC = a$$
, $HC = \frac{1}{2}a = \frac{a}{2}$

$$S_{ABC} = HC \cdot BH \quad tgC = \frac{BH}{HC};$$

$$\alpha C tg\alpha = \frac{BH}{a} \Rightarrow BH = \frac{a}{2} \cdot tg\alpha$$

$$C tg\alpha = \frac{BH}{a} \Rightarrow BH = \frac{a}{2} \cdot tg\alpha$$

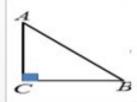
$$S_{ABC} = \frac{a}{2} \cdot \frac{a}{2} \cdot tg\alpha = \frac{a^2}{4} tg\alpha$$

Omeem: $a)b^2 \cdot \sin \alpha \cdot \cos \alpha$; $\delta = \frac{a^2}{4} tg\alpha$

Задачи сдать индивидуально

Дополнительные задачи на урок и на дом

- 1. В прямоугольной трапеции основания равны 6 см и 11 см, меньшая боковая сторона равна 4 см. Найдите синус, косинус и тангенс острого угла трапеции.
- **2.** Отрезки AB и CD пересекаются в точке O так, что OD = 10 см. Из точки D на отрезок OB опущен перпендикуляр DE OE = 6 см. Найдите угол DOE.
- **3.** Сторона *AD* параллелограмма *ABCD* равна 12 см, диагональ *BD* перпендикулярна сторона *AB* и равна 7 см. Найдите углы параллелограмма.



Самостоятельная работа по теории

Уроки №62-63 от 10.02.17г.	
10	

Синусом острого угла ______

Заполнить пропуски в определениях синуса, косинуса и тангенса, выразить указанные элементы:

$$\sin A = -$$

$$\sin A = - \cos A = -$$

$$tgA = -$$

$$AB = BC = ...$$
 $AC = ...$

$$AB = BC = ...$$
 $AC = ...$

Уроки №62-63 от 10.02.17г.

Косинусом острого угла

Заполнить пропуски в определениях синуса, косинуса и тангенса, выразить указанные элементы:

$$\sin B = - \cos B = -$$

$$cosB = -$$

$$tgB = -$$

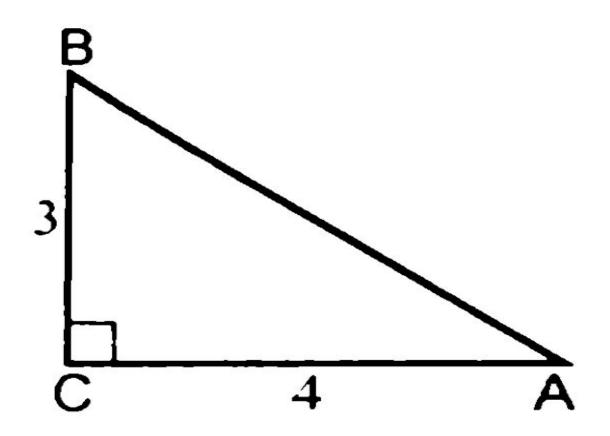
$$AB = BC = ...$$
 $AC = ...$

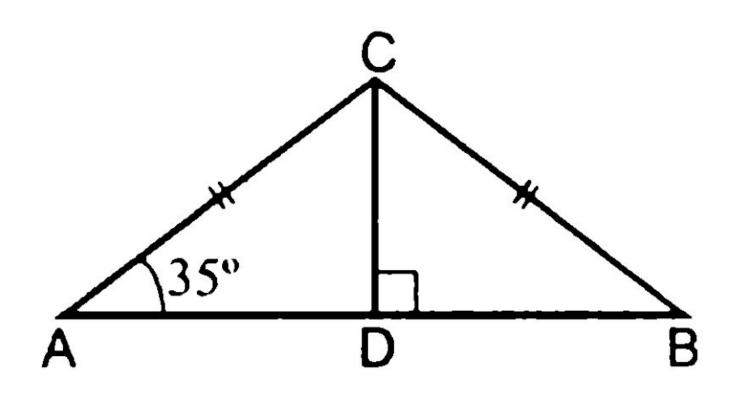
$$AB = BC = ...$$
 $AC = ...$

С точностью до сотых найдите:

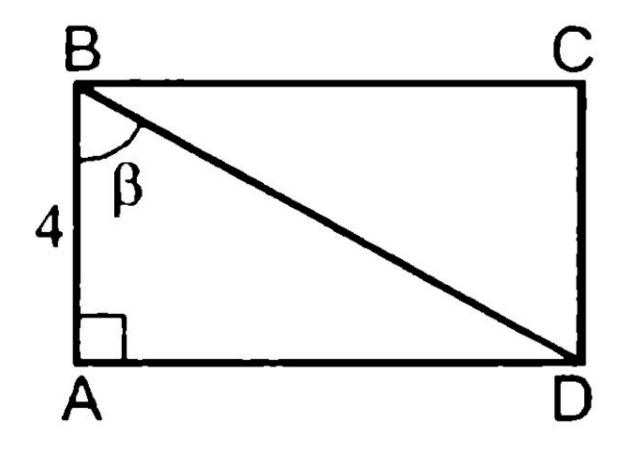
С точностью до сотых найдите:

- 1) $\sin 75^{\circ} \approx$
- 2) cos 45° ≈
- 3) tg35° ≈

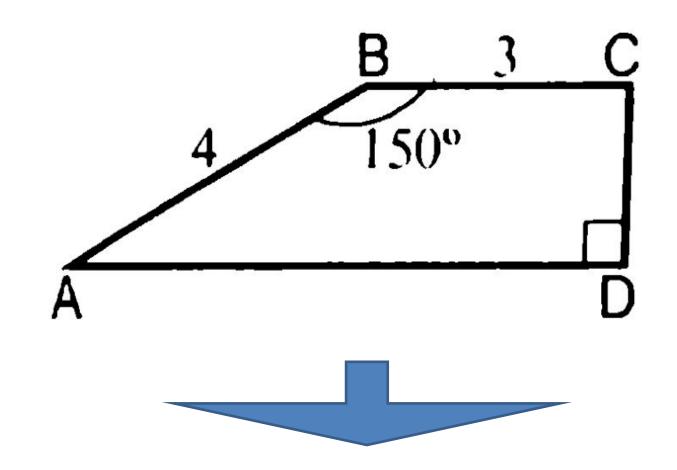

КР Значения синуса, косинуса, тангенса углов 30°;45°;60°. §4, n.67

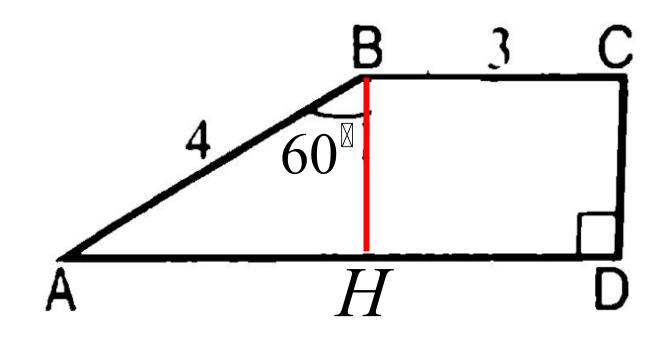

-Совершенствовать навыки решения прямоугольных треугольников.

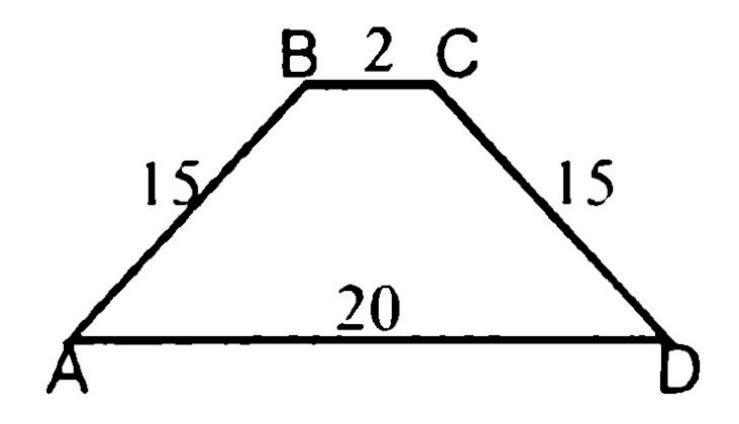
-Формировать навыки парной и групповой работы на уроке в процессе решения задач.

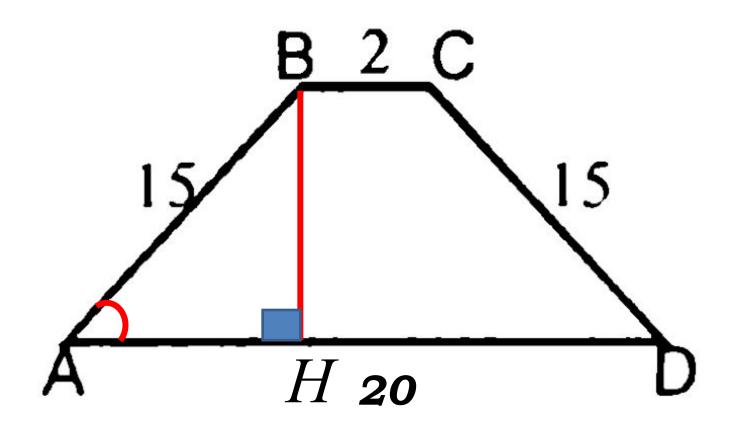

I уровень – с обсуждением решения.

1. С краткими записями в тетрадь Найти: $\sin B$, $\cos B$, tg B.

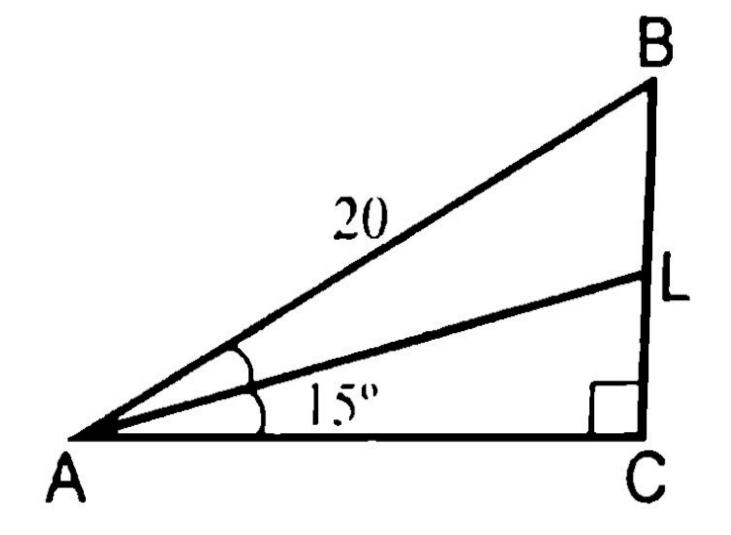



3. *Дано*: *ABCD* – прямоугольник. *Найти*: *AD*, *AC*.

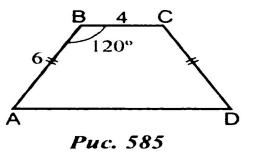

4. Дано: ABCD — трапеция. Найти: AD, CD, S_{ABCD} .

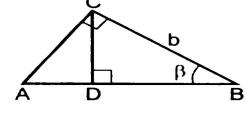

4. Дано: ABCD — трапеция. Найти: AD, CD, S_{ABCD} .

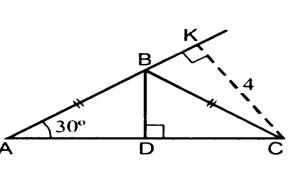
5. $\begin{subarray}{ll} \emph{Дано: } ABCD - \end{subarray}$ - трапеция. $\end{subarray}$ - $\end{subarray}$



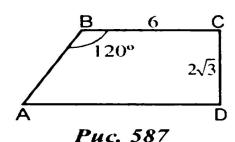
5. $\begin{subarray}{ll} \emph{Дано: } ABCD - \end{subarray}$ - трапеция. $\end{subarray}$ - $\end{subarray}$


6.

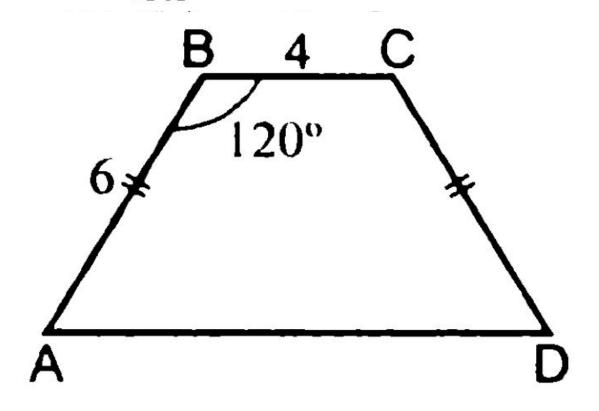

Haŭmu: AC.


II уровень - самостоятельное решение с самопроверкой по готовым ответам

- 1. Рис. 585. Дано: АВСО равнобедренная трапеция. Haŭmu: S_{ABCD} .
- 2. Рис. 586. *Найти*: AD, AC.
- **3.** Рис. 587. Дано: *ABCD* трапеция. Haŭmu: AD, S_{ABCD} .
- **4.** Puc. 588. \mathcal{L} aho: $\cos B = 1/3$, AB = 4. Найти НК.
- **5.** Рис. 589. *Найти*: *BD*.
- 6. Рис. 590. Найти: AD.



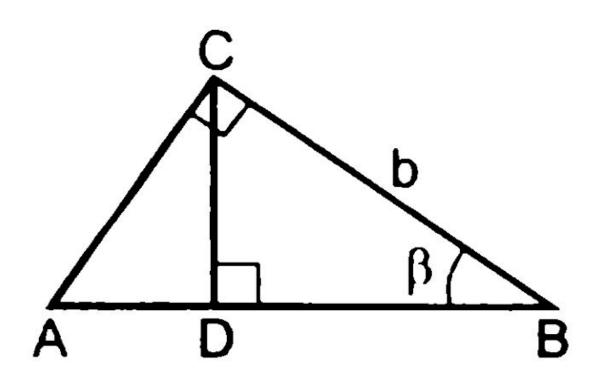
Puc. 586



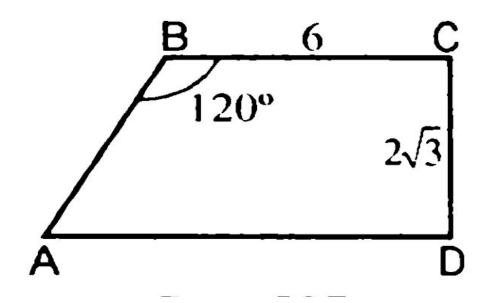
Puc. 588 Puc. 589

Puc. 590

II уровень – самостоятельное решение в группах Задачу 1 решают все

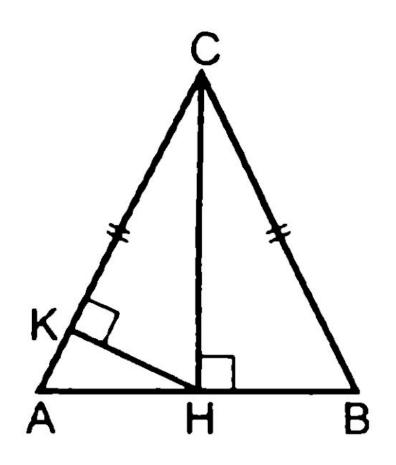


Решение:


$$BH, CH_1 - высоты$$
 $AH = H_1D = \frac{1}{2}AB = 3$ $AD = 2AH + BC = 10$

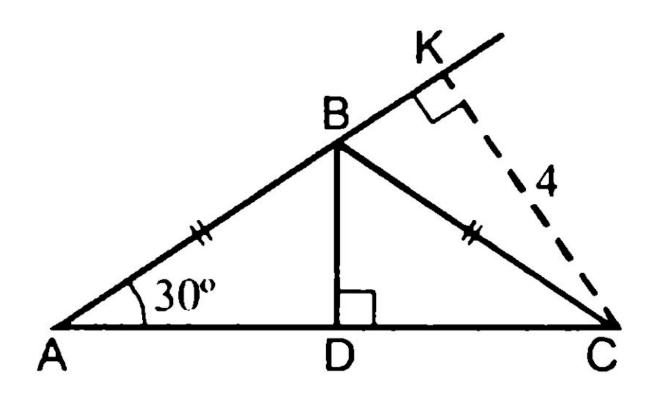
$$\sin A = \frac{BH}{AB} \Rightarrow BH = AB \cdot \sin 60^{\circ} = 6 \cdot \frac{\sqrt{3}}{2} = 3\sqrt{3}$$

$$S_{ABCD} = \frac{BC + AD}{2} \cdot BH; \quad S_{ABCD} = \frac{4+10}{2} \cdot 3\sqrt{3} = 21\sqrt{3}$$



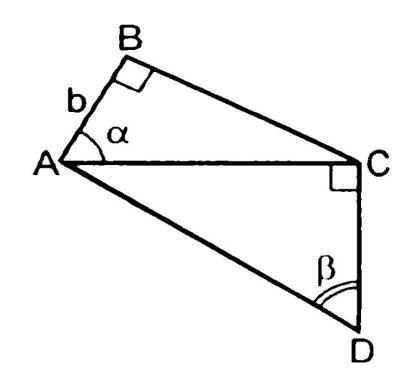
2. $AD = b \cdot \text{tg}\beta \cdot \sin\beta$; $AC = b \cdot \text{tg}\beta$.

3.
$$AD = 8$$
; $S_{ABCD} = 14\sqrt{3}$


4. \mathcal{L} Дано: $\cos B = 1/3$, AB = 4. Найти HK.

4.
$$HK = \frac{4\sqrt{2}}{3}$$

5.


Haŭmu: BD.

5.
$$BD = \frac{4\sqrt{3}}{3}$$

6.

Haŭmu: AD.

$$6. \ AD = \frac{b \cdot \cos \alpha}{\sin \beta}$$

Tecm

I вариант

В задачах 1, 2 выберите правильный ответ.

1. Дано: $\triangle ABC$, $\angle C = 90^{\circ}$, $\angle A = 41^{\circ}$, BC = 5 см.

Найти: АС.

Варианты ответов:

a) $5 \cdot \cos 41^{\circ}$;

 \mathbf{B}) 5 · tg 41°;

б) 5 : tg 41°; г) 5 : sin 41°.

2. Дано: $\sin \alpha = \frac{5}{13}$.

Haŭmu: tg α.

Варианты ответов:

a) $\frac{5}{12}$;

6) $\frac{12}{13}$; r) $\frac{13}{12}$.

B) $\frac{12}{5}$;

- 3. Запишите правильный ответ задачи.

В треугольнике $ABC \angle C = 90^{\circ}$, CD – высота, $\angle A = \angle \alpha$, AB = k. Найдите AC, BC, AD.

4. Запишите полное решение задачи.

Стороны параллелограмма равны 4 см и 5 см, угол между ними 45°. Найдите высоты параллелограмма.

Tecm

II вариант

В задачах 1, 2 выберите верный ответ.

1. Дано: $\triangle ABC$, $\angle C = 90^{\circ}$, $\angle B = 49^{\circ}$, BC = 9 см.

Найти: АС.

Варианты ответов:

a) 9 : tg 49°;

б) 9 · cos 49°;

B) $9 : \sin 49^{\circ}$;

r) $9 \cdot tg 49^{\circ}$.

2. $Aaho: \cos \alpha = \frac{8}{17}$.

Haŭmu: tg a.

Варианты ответов:

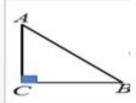
6) $\frac{15}{8}$; r) $\frac{8}{9}$.

B) $\frac{8}{15}$;

3. Запишите правильный ответ.

В треугольнике MNP $\angle P = 90^{\circ}$, PK – высота, $\angle N = \beta$, PN = b. Haй∂ume MN, MP, KN.

4. Запишите полное решение задачи.


Стороны параллелограмма равны 6 и 7 см, угол между ними 60°. Найдите высоты параллелограмма.

Самостоятельная работа по теории

Уроки №62-63 от 10.02.17г.	
(C) (N)	

Синусом острого угла

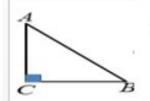
Заполнить пропуски в определениях синуса, косинуса и тангенса, выразить указанные элементы:

$$\sin A = -$$

$$\sin A = - \cos A = -$$

$$tgA = -$$

$$AB = BC = ...$$


$$AB = BC = ...$$
 $AC = ...$

$$AC = ...$$

Уроки №62-63 от 10.02.17г.

Косинусом острого угла

Заполнить пропуски в определениях синуса, косинуса и тангенса, выразить указанные элементы:

$$\sin B = - \cos B = -$$

$$cosB = -$$

$$tg B = -$$

$$AB = BC = ...$$

$$AC = ...$$

$$AB = -$$

$$BC = ...$$

$$AC = ...$$

С точностью до сотых найдите:

- 1) sin 45° ≈
- 2) cos 70° ≈
- 3) tg15° ≈

С точностью до сотых найдите:

- 1) $\sin 75^{\circ} \approx$
- 2) cos 45° ≈
- 3) tg35° ≈

Поставьте себе оценку за урок

Критерии оценки за урок:

- 1. Комментировали ДЗ
- 2. Активно участвовали в решении устных задач.
- 3. Привели решение задач, решаемых письменно

Назовите ученика, который по вашему мнению был сегодня на уроке лучшим

<u>ДР №40</u> на 13<u>.02.17</u>

Теория: §4, п.66, знать значения синуса, косинуса, тангенса углов 30°, 45°, 60°. Уметь выражать катеты и гипотенузу.

Практика: №№ 599,601,602

Для решения №601,602 разобрать и заполнить пропуски в задачах

№75,77 из Рабочей тетради

В прямоугольном треугольнике гипотенуза равна c, а один из острых углов равен α . Выразите катеты через c и α и найдите их длины, если:

- а) c = 12 дм, $\alpha = 30^{\circ}$;
- б) c = 16 дм, $\alpha = 45^{\circ}$.

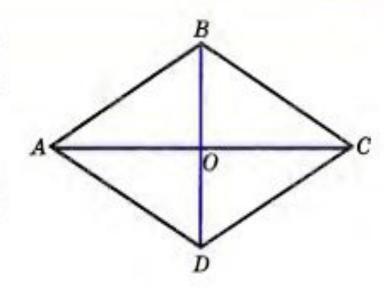
Решение.

Обозначим длину катета, противолежащего углу α , буквой a и длину ______, прилежащего к углу α , буквой b.

Тогда $\sin \alpha = \frac{1}{c}$, $\cos \alpha = \frac{1}{c}$. Отсюда получаем: $a = c \cdot _$,

b =______. Подставляя числовые данные, получим:

- a) $a = ___ \cdot \sin 30^\circ = ___ \cdot __ = __ (дм);$
 - b =_____(дм).
- б) a =_____(дм);
 - b =_____(дм).


Ответ.

- a) _____
- б) _____

Найдите углы ромба ABCD, если его диагонали AC и BD равны $4\sqrt{3}$ м и 4 м.

Решение.

Пусть \angle BAO = α . Диагонали ромба делят его углы _______, значит, \angle DAO = \angle _____ = α .

Диагонали ромба взаимно ________, следовательно, в и точкой пересечения делятся ________, следовательно, в прямоугольном треугольнике ABO катет AO равен _____ м, а катет _____ равен ____ м. Поэтому tg α = _____ , откуда α = _____, а ∠ BAD = 2 · ____ = ____, ∠ ADC = ∠ ___ = ____

Ответ.