Алгебра и начала анализа 11 класс

(учебник А.Г.Мордковича, профильный уровень)

«Иррациональные уравнения»

Учитель Смолькова Н.П.

МОУ СОШ № 9 г.Кандалакши

Домашнее задание:

$$x^2 + 2x + \sqrt{x^2 + 2x + 8} - 12 = 0$$

$$\sqrt{x} + \sqrt{x+3} + \sqrt{x+8} = 6$$

$$\sqrt{x+1} - \sqrt[3]{2x-6} = 2$$

$$\sqrt{x} + \sqrt{x+7} + 2 \cdot \sqrt{x^2 + 7x} = 35 - 2x$$

- Обязательное задание
- Сложное задание

«ХОД КОНЕМ»

ИД	ЛИ	НЫХ	НИИ	И
НАЛЬ	ШЕ	ЕЮ	30	У
PEA	ДИ	НИЙ	ПОСТА	ИР
PE	ЦИО	EË	PAB	ВАТЬ
НАЙ	HE	ПРИ	PA	РАЙСЯ

Решить уравнение $\sqrt{x}=2$	$\frac{\text{Вычислить}}{\text{производную}}$ $\left(\sqrt{x}\right)'$	$\frac{\text{В чем отличие?}}{\sqrt{t^2}}$ $\left(\sqrt{t}\right)^2$	
Разложить на множители $x^2 - 2x + 1$	Воспроизвести формулы $(a+b)^3$ a^3+b^3	$\frac{\Phi \text{ормула}}{\sin \alpha + \sin \beta}$	
Определение возрастающей функции	Скалярное произведение векторов	Решить уравнение $\sqrt[3]{x}=2$	

Метод оценки функций

$$\sqrt{f(x)} + \sqrt{g(x)} = s(x)$$

$$\frac{a+b}{2} \ge \sqrt{ab}; \frac{a+b+c}{3} \ge \sqrt[3]{abc}; \dots$$

$$\sqrt{f(x)} = \sqrt{f(x) \cdot 1} \le \frac{f(x) + 1}{2}$$

$$\sqrt{g(x)} = \sqrt{g(x) \cdot 1} \le \frac{g(x) + 1}{2}$$

МЕТОД ЗАМЕНЫ ПЕРЕМЕННОЙ

$$2x^2 + 3x + \sqrt{2x^2 + 3x + 9} = 33$$

$$\sqrt[3]{9-x} + \sqrt[3]{7+x} = 4$$

$$\sqrt{5x+7} - \sqrt{3x+1} = \sqrt{x+3}$$

МЕТОД МОНОТОННОСТИ ФУНКЦИИ

$$\sqrt{x} + \sqrt{x+3} + \sqrt{x+8} + \sqrt{x+24} = 11$$
 $x_1 - \text{корень}$
 $x_2 - \text{корень}$
 $x_1 - \text{корень}$
 $x_2 - \text{корень}$
 $x_1 - \text{корень}$
 $x_2 - \text{корень}$
 $x_2 - \text{корень}$
 $x_1 - \text{корень}$
 $x_2 - \text{корень}$
 $x_2 - \text{корень}$
 $x_1 - \text{корень}$
 $x_2 - \text{корень}$
 $x_2 - \text{корень}$
 $x_2 - \text{корень}$
 $x_1 - \text{корень}$
 $x_2 - \text{корень}$
 $x_2 - \text{корень}$
 $x_2 - \text{корень}$
 $x_1 - \text{корень}$
 $x_2 - \text{корень}$
 $x_2 - \text{корень}$
 $x_2 - \text{корень}$
 $x_2 - \text{корень}$
 $x_3 - \text{корень}$
 $x_1 - \text{корень}$
 $x_2 - \text{корень}$
 $x_1 - \text{корень}$
 $x_2 - \text{корень}$
 $x_2 - \text{корень}$
 $x_3 - \text{корень}$
 $x_1 - \text{корень}$
 $x_2 - \text{корень}$
 $x_3 - \text{корень}$
 $x_1 - \text{корень}$
 $x_2 - \text{корень}$
 $x_3 - \text{корень}$
 $x_1 - \text{корень}$
 $x_2 - \text{корень}$
 $x_3 - \text{корень}$
 $x_4 - \text{корень}$
 $x_1 - \text{корень}$
 $x_2 - \text{корень}$
 $x_3 - \text{корень}$
 $x_4 - \text{корень}$
 $x_1 - \text{корень}$
 $x_2 - \text{корень}$
 $x_3 - \text{корень}$
 $x_4 - \text{корень}$
 $x_1 - \text{корень}$
 $x_2 - \text{корень}$
 $x_3 - \text{корень}$
 $x_4 -$

ВЕКТОРНЫЙ МЕТОД

$$12\sqrt{x} + 5\sqrt{9 - x} = 39$$

$$\begin{cases} x \ge 0 & x \ge 0 \\ 9 - x \ge 0, & x \le 9 \end{cases}$$

$$nycmb$$
 $a(12;5)$, $b(\sqrt{x};\sqrt{9-x})$ $a \cdot b = |a| \cdot |b| \cdot \cos \alpha$

$$\Box a \cdot b = a_1 \cdot b_1 + a_2 \cdot b_2$$

$$otbet: x = \frac{1296}{169}$$

МЕТОД МАЖОРАНТА

$$f(x)=q(x)$$

Мажоранта- объявлять большим, **Миноранта**- объявлять меньшим.

после нахождения О.Д.З.

Если определить, что

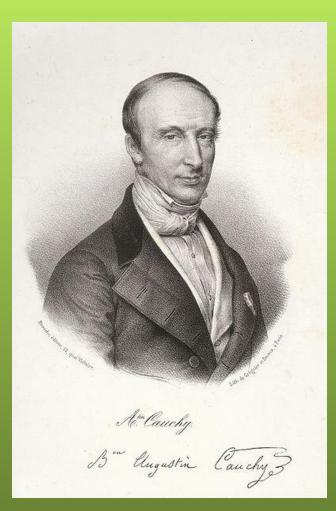
$$f(x) \ge M$$

$$q(x) \le M$$

$$f(x) = q(x) = M$$

$$\sqrt{x-2} + \sqrt{4-x} = x^2 - 6x + 11$$

МЕТОД ПЕРЕХОДА К СИСТЕМЕ


$$\sqrt[m]{ax+b} \pm \sqrt[n]{cx+d} = p$$

$$\sqrt[3]{\tilde{o}-2} + \sqrt{\tilde{o}+1} = 3$$

введем переменные $u = \sqrt[3]{x-2}$, и $v = \sqrt{x+1}$

$$\begin{cases} u + v = 3 \\ 2?????? & u^3 + v^2 = x - 2 + x - 1 = 2x - 3 \\ u^3 - v^2 = x - 2 - (x + 1) = -3 \end{cases}$$

ПРИМЕНЕНИЕ НЕРАВЕНСТВА КОШИ

Огюстен Луи Коши

(1789-1985 г.г.)

$$\frac{a+b}{2} \ge \sqrt{ab};$$

Равенство, если a=b

$$\frac{a+b+c}{3} \ge \sqrt[3]{a \cdot b \cdot c}$$

$$\frac{a+b+c+d}{4} \ge \sqrt[4]{a \cdot b \cdot c \cdot d}$$

$$\sqrt[3]{25x(2x^2+9)} = 4x + \frac{3}{x}$$

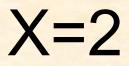
МЕТОД ПРИСТАЛЬНОГО ВЗГЛЯДА

$$\sqrt{x^2 - 3 + 10} = 0$$

Решений нет

$$\sqrt{x-5} + \sqrt{x^2 + 4} = 0$$

Решений нет


$$\sqrt{x-7} + 3 = \sqrt{5-x}$$

Решений нет

$$\sqrt{-4-x^2} = 12$$

Решений нет

$$\sqrt{x+2} + \sqrt{x+7} = 5$$

ТРИГОНОМЕТРИЧЕСКАЯ ЗАМЕНА


$$\sqrt{1 - x^2} = 4x^3 - 3x$$

 $4x^{3} - 3x$ существует при ллюбых начениях х

$$\sqrt{1-x^2}$$
 существует при х ∈ [-1;1]

$$nycmb$$
 $x = \sin \alpha$

Домашнее задание:

$$x^2 + 2x + \sqrt{x^2 + 2x + 8} - 12 = 0$$

$$\sqrt{x} + \sqrt{x+3} + \sqrt{x+8} = 6$$

$$\sqrt{x+1} - \sqrt[3]{2x-6} = 2$$

$$\sqrt{x} + \sqrt{x+7} + 2 \cdot \sqrt{x^2 + 7x} = 35 - 2x$$

- Обязательное задание
- Сложное задание

Вы молодцы!

