Ведение в Математический анализ — часть математики, в которой функции и их обобщения изучаются с помощью пределов.

§ Понятие функции

Основные понятия

Пусть X,Y – множества произвольной природы.

ОПРЕДЕЛЕНИЕ. Если $\forall x \in X$ поставлен в соответствие единственный элемент $y \in Y$, то говорят, что на множестве X задана функция (отображение) с множеством значений Y.

Записывают: $f: X \to Y$, y = f(x) (где f – закон, осуществляющий соответствие)

Называют: X – область (множество) определения функции x ($x \in X$) – аргумент (независимая переменная) Y – область (множество) значений y ($y \in Y$) – зависимая переменная (функция)

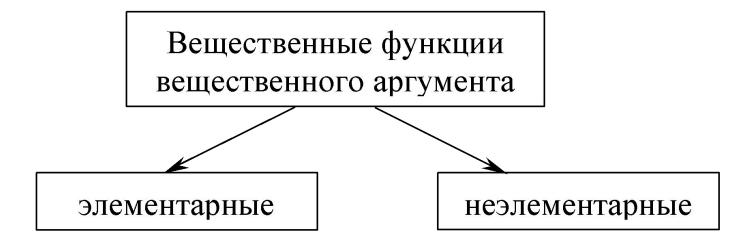
СПОСОБЫ ЗАДАНИЯ ФУНКЦИИ

- 1) словесный;
- 2) табличный;
- 3) графический;

ОПРЕДЕЛЕНИЕ. *Графиком функции* y = f(x) называется геометрическое место точек плоскости с координатами (x; f(x)). График функции y = f(x) будем также называть «кривой y = f(x)».

- 4) аналитический:
 - а) явное задание (т.е. формулой y = f(x))
 - б) неявное задание (т.е. с помощью уравнения F(x,y)=0).

Классификация вещественных функций вещественного аргумента



ОСНОВНЫЕ ЭЛЕМЕНТАРНЫЕ ФУНКЦИИ:

- 1) степенные: $y = x^r$ ($r \in \mathbb{R}$)
- 2) показательные: $y = a^x$ (a > 0, a \neq 1)
- 3) логарифмические: $y = \log_a x$ (a > 0, a ≠ 1)
- 4) тригонометрические: $y = \sin x$, $y = \cos x$, $y = \tan x$, $y = \cot x$
- 5) обратные тригонометрические: $y = \arcsin x$, $y = \arccos x$, $y = \arctan x$, $y = \arctan x$

ОПРЕДЕЛЕНИЕ. Элементарной функцией называется функция, которая может быть задана одной формулой y = f(x), где f(x) — выражение, составленное из основных элементарных функций и действительных чисел с помощью конечного числа операций сложения, вычитания, умножения, деления и взятия функции от функции.

• Многочленом степени п (полиномом, целой рациональной) называется функция вида

$$P_n(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n$$

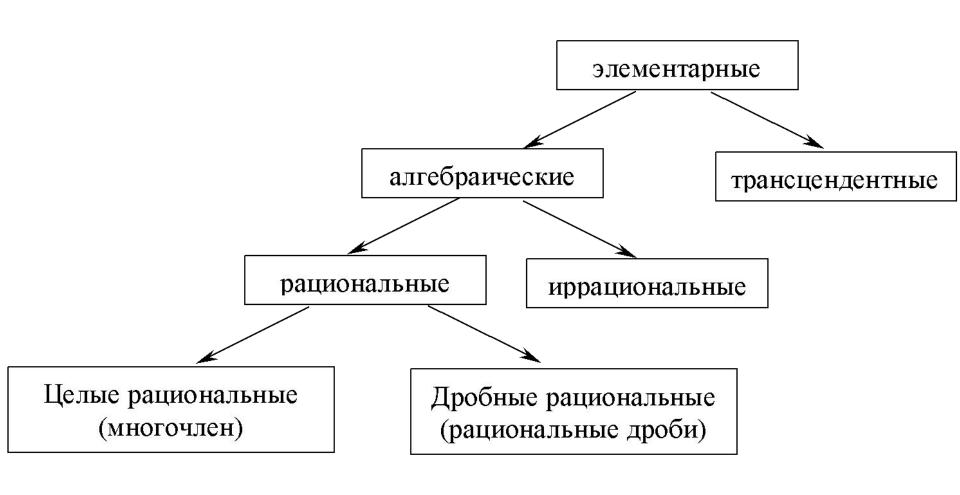
$$(a_k \in R, \ a_0 \neq 0, \ n \in N, \ k = 0, \dots, n).$$

• *Рациональной* (дробной рациональной) функцией называют отношение двух многочленов

$$f(x) = \frac{a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n}{b_0 x^m + b_1 x^{m-1} + b_2 x^{m-2} + \dots + b_m}$$

• <u>Иррациональными функциями</u> называют функции, полученные конечным числом арифметических операций над аргументом *x* и конечного числа композиций степенных функций с рациональным показателем.

- Алгебраическими функциями называют рациональные (целые рациональные и дробные рациональные) и иррациональные функции.
- *Трансцендентными* называют остальные элементарные функции.



Основные характеристики поведения функции

- 1) Четность функции (четная, нечетная, общего вида);
- 2) Периодичность функции;
- 3) Монотонность функции (возрастающая, убывающая, невозрастающая);
- 4) Ограниченность функции (ограниченная сверху, ограниченная снизу, ограниченная).

§ Предел функции

Определение предела функции по Коши

Пусть функция f(x) определена в некоторой окрестности точки $x_0 \in \mathbb{R}$, кроме, может быть, самой точки x_0 .

 $U^*(x_0, \delta) = U(x_0, \delta) \setminus \{x_0\}$ – проколотая окрестность точки x_0 .

ОПРЕДЕЛЕНИЕ (по Коши, на языке ε - δ).

Число $A \subseteq \mathbb{R}$ называется **пределом функции** f(x) **при** x, **стремящемся** κx_0 (пределом функции f(x) в точке x_0), когда $\forall \varepsilon > 0 \quad \exists \delta > 0 \quad makoe$, что

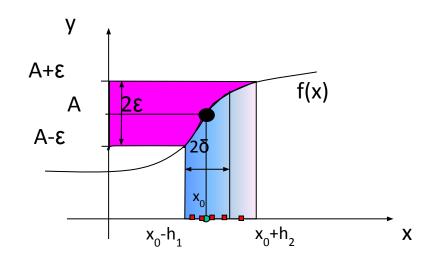
если $x \in U^*(x_0, \delta)$, то $f(x) \in U(A, \varepsilon)$.

Геометрическая интерпретация понятия предела функции

$$f(x) \xrightarrow{x \to x_0} A$$

$$\lim_{x \to x_0} f(x) = A$$

$$(\forall \varepsilon > 0)(\exists \delta(\varepsilon) > 0)(\forall x \in X, 0 < |x - x_0| < \delta) \Rightarrow |f(x) - A| < \varepsilon)$$



Свойства пределов

- 1) Если функция имеет предел при $x \to x_0$, то этот предел единственный.
 - 2) Если функция f(x) имеет предел при $x \to x_0$, то она ограничена в некоторой проколотой окрестности точки x_0 (говорят: функция локально ограничена).

- ОПРЕДЕЛЕНИЕ. Функция $\alpha(x)$ называется **бесконечно малой при** $x \to x_0$, если $\lim_{x \to x_0} \alpha(x) = 0$
- 3) ЛЕММА (о роли бесконечно малых функций).
 - Число $A \subseteq \mathbb{R}$ является пределом функции f(x) при $x \to x_0 \Leftrightarrow f(x) = A + \alpha(x)$, где $\alpha(x)$ бесконечно малая при $x \to x_0$.
- 4) Пусть f(x) ограничена в некоторой проколотой окрестности точки x_0 , $\alpha(x)$ бесконечно малая при $x \to x_0$. Тогда $f(x) \cdot \alpha(x)$ бесконечно малая при $x \to x_0$.

5) Пусть f(x) и g(x) имеют предел при $x \to x_0$. Тогда их сумма, разность, произведение и частное тоже имеют предел при $x \to x_0$, причем

a)
$$\lim_{x \to x_0} [f(x) \pm g(x)] = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x)$$

b)
$$\lim_{x \to x_0} [f(x) \cdot g(x)] = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$$

$$c)$$
 $\lim_{x \to x_0} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} \left(\lim_{x \to x_0} g(x) \neq 0 \right)$ Следствие свойства 5. Если $x \neq x$ имеет предел при $x \to x_0$, то

Следствие свойства 5. Если $x \to (x_0)$ имеет предел при $x \to x_0$, то $\forall c \in \mathbb{R}$ функция $c \cdot f(x)$ тоже имеет предел при $x \to x_0$, причем

$$\lim c \cdot f(x) = c \cdot \lim f(x)$$

Говорят: «константу можно вынести за знак предела».

Замечание. Свойство 5 и его следствие обычно называют теоремами о пределах.

6) Пусть f(x) имеет предел при $x \to x_0$ и $\exists \delta > 0$ такое, что $f(x) \ge 0$ (или f(x) > 0), $\forall x \in U^*(x_0, \delta)$.

Тогда
$$\lim_{x \to x_0} f(x) \ge 0$$

7) Пусть f(x) и g(x) имеют пределы при $x \to x_0$ и $\exists \delta > 0$ такое, что $f(x) \ge g(x)$ (или f(x) > g(x)), $\forall x \in U^*(x_0, \delta)$.

Тогда
$$\lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x)$$

8) ЛЕММА (о двух милиционерах).

Пусть f(x) и g(x) имеют одинаковый предел при $x \to x_0$ и $\exists \delta > 0$ такое, что $f(x) \le \phi(x) \le g(x)$, $\forall x \in U^*(x_0, \delta)$.

Тогда функция $\phi(x)$ тоже имеет предел при $x \to x_0$, причем

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \varphi(x) = \lim_{x \to x_0} g(x)$$

9) Пусть $f: X \to Y$, $\phi: Y \to Z$ и существуют пределы $\lim_{x \to x_0} f(x) = y_0$, $\lim_{y \to y_0} \varphi(y) = z_0$

Тогда сложная функция $\phi(f(x))$ имеет предел при $x \to x_0$, причем

 $\lim_{\substack{x \to x_0 \\ \text{ Формула}}} \varphi(f(x)) = \lim_{\substack{y \to y_0 \\ \text{ переменной в пределе.}}} \varphi(y) = z_0$ (1)

Формула (1) называется формулой замены переменной в пределе.

Предел последовательности

ОПРЕДЕЛЕНИЕ. Последовательностью

называется функция, заданная на множестве натуральных чисел.

Если область значений последовательности — числовое множество, то последовательность называют *числовой*, если область значений — множество функций, то последовательность называют *функциональной*.

Принято обозначать:

аргумент последовательности: n (или k) значения функции: x_n , y_n и т.д.

Называют: x_1 – первый член последовательности, x_2 – второй член последовательности и т.д. x_n – n-й (общий) член последовательности.

Способы задания последовательностей:

- 1) явно (т.е. формулой $x_n = f(n)$)
- 2) рекуррентным соотношением (т.е. формулой $x_n = F(x_{n-1}, x_{n-2}, ..., x_{n-k})$)

Записывают последовательность:

 $\{x_1, x_2, ..., x_n, ...\}$ — развернутая запись; $\{x_n\}$ — короткая запись (где x_n — общий член последовательности).

ОПРЕДЕЛЕНИЕ. Число $a \in \mathbb{R}$ называется пределом последовательности $\{x_n\}$ если $\forall \varepsilon > 0$ $\exists N \in \mathbb{N}$ такое, что

$$|x_n - a| < \varepsilon, \forall n > N.$$

Записывают: $\lim_{n\to\infty} x_n = a, \quad x_n \to a$

Говорят: последовательность $\{x_n\}$ сходится (стремится) к a.

Последовательность, имеющую предел, называют сходящейся (сходящейся к числу а)

Последовательность, не имеющую предела, называют расходящейся.

ГЕОМЕТРИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ предела последовательности

Пусть $r \in \mathbb{R}$, $M(r) \in Ox$

M(r) – геометрическая интерпретация числа $r \in \mathbb{R}$.

Пусть $x_0 \in \mathbb{R}$, $\epsilon > 0$.

Интервал $(x_0 - \varepsilon; x_0 + \varepsilon)$ называют ε -окрестностью точки x_0 . (геометрическое определение ε -окрестности точки)

Будем обозначать: $U(x_0, \epsilon)$

Имеем: $U(x_0, \varepsilon) = \{x \in \mathbb{R} : |x - x_0| < \varepsilon\}$

(алгебраическое определение є-окрестности точки)

Из определения предела последовательности следует: если $\{x_n\} \rightarrow a$,

то с геометрической точки зрения это означает,

что в любой є-окрестности точки a находятся все члены последовательности $\{x_n\}$,

за исключением, может быть, конечного числа членов этой последовательности. (Геометрическая интерпретация предела последовательности).

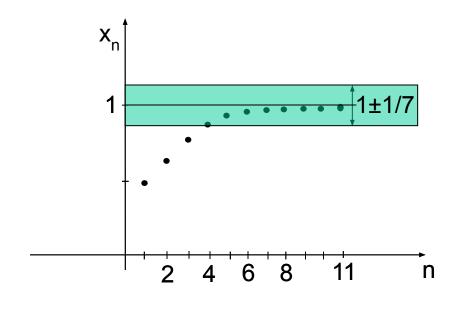
 $\Rightarrow a$ — точка «сгущения» последовательности $\{x_n\}$.

Число A называется пределом последовательности $\{x_n\}$ при $n\to\infty$, если $\forall \varepsilon>0$ $\exists N(\varepsilon)$ $\forall n>N$ $|x_n-A|<\varepsilon$

Пишут:
$$\lim_{n\to\infty} x_n = A$$

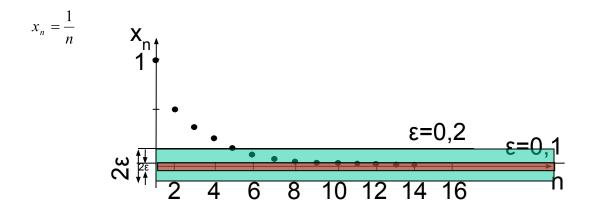
Доказать:

$$\lim_{n\to\infty}\frac{n}{n+1}=1$$



Последовательность $\{x_n\}$ называется **бесконечно малой,** если $\lim_{n\to\infty}x_n=0$

то есть если $\forall \varepsilon > 0 \ \exists N(\varepsilon) \ \forall n > N(\varepsilon) \ |x_n| < \varepsilon$



Бесконечно большие функции

Пусть функция f(x) определена в некоторой окрестности точки $x_0 \in \mathbb{R}$, кроме, может быть, самой точки x_0 .

ОПРЕДЕЛЕНИЕ (на языке ε - δ).

Функцию f(x) называют бесконечно большой при $x \to x_0$ (в точке x_0), если $\forall M > 0 \quad \exists \delta > 0$ такое, что

если $x \in U^*(x_0, \delta)$, то |f(x)| > M.

Говорят: $\langle f(x) \rangle$ стремится к ∞ при $x \to x_0 > \infty$ $\langle ($ предел функции $f(x) \rangle$ при $x \to x_0 \rangle$ равен $\infty > \infty$. Частные случаи бесконечно больших функций:

1)
$$f(x) - 6.6$$
. при $x \to x_0$ и $f(x) \ge 0$, $\forall x \in U^*(x_0, \delta)$.

Тогда
$$|f(x)| = f(x) > M$$
, $\forall x \in U^*(x_0, \delta)$

Записывают:
$$\lim_{x \to x_0} f(x) = +\infty$$
, $f(x) \to +\infty$ d'dĕ $x \to x_0$

Говорят: $\langle f(x) \rangle$ стремится $\kappa + \infty$ при $x \to x_0 > \infty$ $\langle ($ предел функции $f(x) \rangle$ при $x \to x_0 > \infty$ равен $+ \infty > \infty$.

2)
$$f(x) - 6.6$$
. при $x \to x_0$ и $f(x) \le 0$, $\forall x \in U^*(x_0, \delta)$.

Тогда
$$|f(x)| = -f(x) > M$$

 $\Rightarrow f(x) < -M, \forall x \in U^*(x_0, \delta)$

Записывают:

$$\lim_{x \to x_0} f(x) = -\infty, \qquad f(x) \to -\infty \text{ d'đč } x \to x_0$$

Говорят: $\langle f(x) \rangle$ стремится $\kappa - \infty$ при $x \to x_0 > \infty$ $\langle ($ предел функции $f(x) \rangle$ при $x \to x_0 > \infty$ равен $- \infty > \infty$.

СВОЙСТВА БЕСКОНЕЧНО БОЛЬШИХ ФУНКЦИЙ

- 1) Если f(x) б.б. при $x \to x_0$, то функция 1/f(x) б.м. при $x \to x_0$. Если $\alpha(x)$ б.м. при $x \to x_0$, то функция $1/\alpha(x)$ б.б. при $x \to x_0$. (связь бесконечно больших и бесконечно малых)
- 2) Если f(x) и g(x) б.б функции одного знака, то их сумма f(x) + g(x) б.б. того же знака.
- 3) Если f(x) б.б при $x \to x_0$, g(x) ограниченна в некоторой окрестности $U^*(x_0, \delta)$, то их сумма f(x) + g(x) б.б. при $x \to x_0$.
- 4) Если f(x) и g(x) б.б. при $x \to x_0$, то их произведение $f(x) \cdot g(x)$ тоже б.б. при $x \to x_0$.

- 5) Если f(x) б.б. при $x \to x_0$, g(x) имеет предел при $x \to x_0$, причем $\lim_{x \to x_0} g(x) = a \neq 0$ то их произведение $f(x) \cdot g(x)$ б.б. при $x \to x_0$.
- 6) Если f(x) б.б. при $x \to x_0$ и $\forall x \in U^*(x_0, \delta)$ имеет место неравенство $|f(x)| < |g(x)| (|f(x)| \le |g(x)|)$, то функция g(x) тоже является б.б. при $x \to x_0$.
- 7) Пусть f(x) и $g(x) \delta.\delta$. одного знака при $x \to x_0$ и $\exists \delta > 0$ такое, что $f(x) \le \phi(x) \le g(x)$, $\forall x \in U^*(x_0, \delta)$. Тогда функция $\phi(x)$ тоже является $\delta.\delta$. того же знака при $x \to x_0$.

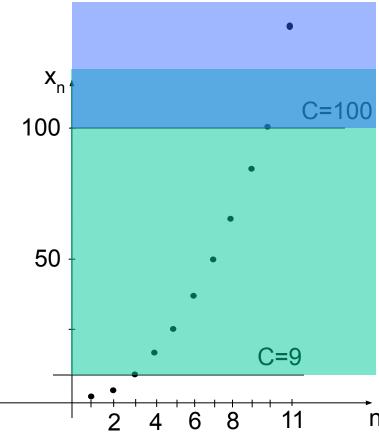
(лемма о двух милиционерах для б.б. функций)

Последовательность $\{x_n\}$ называется **бесконечно большой**, если

$$\forall C > 0 \quad \exists N \quad \forall n > N \mid x_n \mid > C$$

 $\prod_{n\to\infty} x_n = +\infty$

 $x_n = n^2$



Предел монотонной последовательности

Определение. Последовательность $\{x_n\}$ называется

- возрастающей, если для любого n $x_n < x_{n+1}$; обозначают (\uparrow)
- **-** *неубывающей*, если для любого n $x_n \le x_{n+1}$; (\uparrow)
- убывающей, если для любого $n x_n > x_{n+1}$; (\downarrow)
- невозрастающей, если для любого n $x_n \ge x_{n+1}$; (\downarrow)

Определение. Возрастающая и убывающая последовательности называются монотонными

<u>Теорема Вейерштрасса</u> (о существовании предела монотонной последовательности)

Если последовательность $\{x_n\}$ монотонно возрастает (убывает) и ограничена сверху (снизу), то у нее существует конечный предел, равный $\sup\{x_n\}$ ($\inf\{x_n\}$).

Односторонние пределы.

<u>Условие существования</u> $\lim_{x \to x_0} f(x) (x_0 \in \mathbb{R}).$

Пусть f(x) определена в некоторой окрестности точки $x_0 \in \mathbb{R}$, кроме, может быть, самой точки x_0 .

ОПРЕДЕЛЕНИЯ.

- 1) Число $A \subseteq \mathbb{R}$ называется пределом функции f(x) при x, стремящемся κ x_0 слева (в точке x_0 слева), если $\forall \varepsilon > 0$ $\exists \delta > 0$ такое, что если x удовлетворяет условию $0 < x_0 x < \delta$, то $f(x) \subseteq U(A, \varepsilon)$.
- 2) Число $B \in \mathbb{R}$ называется **пределом функции** f(x) **при** x, **стремящемся** κ x_0 **справа**, если $\forall \varepsilon > 0 \quad \exists \delta > 0$ такое, что если x удовлетворяет условию

$$0 < x - x_0 < \delta$$
, mo $f(x) \subseteq U(B, \varepsilon)$.

3) Говорят, что предел функции f(x) в точке x_0 слева равен $+\infty$ ($-\infty$) (функция стремится κ $+\infty$ ($-\infty$) при x, стремящемся κ x_0 слева), если $\forall M>0$ $\exists \delta>0$ такое, что если x удовлетворяет условию

 $0 < x_0 - x < \delta,$ $f(x) > M \quad (f(x) < -M).$

4) Говорят, что **предел функции** f(x) **в точке** x_0 **справа равен** $+\infty$ ($-\infty$), если $\forall M>0$ $\exists \delta>0$ такое, что, если x удовлетворяет условию $0 < x - x_0 < \delta$, то f(x) > M (f(x) < -M).

Обозначают:

$$f(x_0 - 0)$$
, $\lim_{x \to x_0 - 0} f(x)$ — предел $f(x)$ в точке x_0 слева, $f(x_0 + 0)$, $\lim_{x \to x_0} f(x)$ — предел $f(x)$ в точке x_0 справа.

Если $x_0 = 0$, то пределы справа обозначают:

$$f(-0)$$
, $\lim_{x \to -0} f(x)$ è $f(+0)$, $\lim_{x \to +0} f(x)$

ТЕОРЕМА (необходимое и достаточное условие существования предела f(x) при $x \to x_0$ и $x_0 \in \mathbb{R}$).

Функция f(x) имеет предел (конечный) при $x \to x_0$ \Leftrightarrow существуют конечные и равные между собой односторонние пределы функции f(x) при $x \to x_0$. При этом

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0 - 0} f(x) = \lim_{x \to x_0 + 0} f(x)$$

Замечание.

Все свойства пределов и бесконечно больших остаются справедливыми и для односторонних пределов.

Определение предела функции

		<u> </u>	1
символы	определение	картинка	пример
$\lim_{x \to x_0} f(x) = A$	$ \forall \varepsilon > 0 \exists \delta > 0 \forall x$ $ x - x_0 < \delta \mid f(x) - A \mid < \varepsilon$	$\begin{array}{c c} y & 2\varepsilon \\ A & f(x) \\ \hline & x_0 & x \end{array}$	$\lim_{x \to 1} (2x + 5) = 7$ $ 2x+5-7 =2 x-1 < 8$ $\Rightarrow x-1 < \delta = \epsilon/2$
f(x) называется б. м., если	$\forall \varepsilon > 0 \exists \delta > 0$	y	$\lim_{x \to 5} \frac{\overline{x} - 5}{x} = 0$
$ \lim_{x \to x_0} f(x) = 0 $	$\forall x \mid x - x_0 \mid < \delta \mid f(x) \mid < \varepsilon$	2ε 1 2δ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
f(x) называется б. б., если	$\forall C > 0 \ \exists \delta > 0 \ \forall x,$		
$ \lim_{x \to x_0} f(x) = +\infty $	$ x-a < \delta f(x) > C $		
$f(x)$ называется $f(x)$, если $\lim_{x \to x_0} f(x) = -\infty$			

Определение предела функции (продолжение)

символы	определение	картинка	пример
$\lim_{x \to \infty} f(x) = A$	$\forall \varepsilon > 0 \ \exists C \ \forall x,$ $ x > C \ f(x) - A < \varepsilon$	f(x) γ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ	$\lim_{x \to \infty} \frac{x^2 + x}{x^2} = 1$
$\lim_{x \to +\infty} f(x) = A$			
$\lim_{x \to -\infty} f(x) = A$			
$\lim_{x \to \infty} f(x) = \begin{cases} \lim_{x \to +\infty} f(x) = +\infty \\ \lim_{x \to -\infty} f(x) = -\infty \end{cases}$ 1) $\forall M > 0$ $\exists C > 0$ $\forall x > C$ $f(x) > M$ 2) $\forall M > 0$ $\exists C > 0$ $\forall x < -C$ $f(x) < -M$		y	$\lim_{x \to \infty} x(\sqrt{x^2 + 1} - x)$ $= \begin{cases} 1/2, & x \to \infty \\ \infty, & x \to -\infty \end{cases}$

Замечательные пределы

Название замечательных пределов в математическом анализе получили следующие два утверждения:

1)
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
 — первый замечательный предел;

$$x \to 0$$
 x
2) $\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e^{-\frac{1}{x}}$ — второй замечательный предел.

СЛЕДСТВИЯ ПЕРВОГО ЗАМЕЧАТЕЛЬНОГО ПРЕДЕЛА

$$1) \lim_{x \to 0} \frac{\operatorname{tg} x}{x} = 1$$

$$\lim_{x \to 0} \frac{\operatorname{tg} x}{x} = 1$$

$$x \to 0$$
3)
$$\lim_{x \to 0} \frac{\arcsin x}{x} = 1$$

2)
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2 / 2} = 1$$

$$4) \lim_{x \to 0} \frac{\arctan x}{x} = 1$$

СЛЕДСТВИЯ ВТОРОГО ЗАМЕЧАТЕЛЬНОГО ПРЕДЕЛА

1)
$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

3)
$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

2)
$$\lim_{x \to 0} \frac{\log_a (1+x)}{x/\ln a} = 1$$
 4) $\lim_{x \to 0} \frac{a^x - 1}{x \ln a} = 1$

4)
$$\lim_{x \to 0} \frac{a^x - 1}{x \ln a} = 1$$

Замечание. Из формулы замены переменной \Rightarrow 1-й и 2-й замечательный пределы и их следствия остаются верными, если вместо x будет стоять любая б.м. функция $\alpha(x)$.

Сравнение б.м. и б.б. функций

Пусть функции $\alpha(x)$ и $\beta(x) - \delta$.м. при $x \to x_0$. ОПРЕДЕЛЕНИЯ.

1) $\alpha(x)$ называется бесконечно малой более высокого порядка чем $\beta(x)$ если $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 0$ Записывают: $\alpha(x) = o(\beta(x))$.

2) $\alpha(x)$ и $\beta(x)$ называются **бесконечно малыми одного порядка**, если

 $\lim_{x\to x_0}\frac{\alpha(x)}{\beta(x)}=C\,,\quad \text{где }C\!\!\in\!\mathbb{R}\ \text{ и }C\!\neq\!0\,.$ Записывают: $\alpha(x)=O(\beta(x))\,.$

3) $\alpha(x)$ и $\beta(x)$ называются эквивалентными, если

 $\lim_{\alpha(x) \sim x \beta(x)} \frac{\alpha(x)}{\beta(x)} = 1$ Записывают: $\alpha(x) \sim x \beta(x)$.

4) $\alpha(x)$ называется бесконечно малой порядка k относительно бесконечно малой $\beta(x)$, если бесконечно малые $\alpha(x)$ $u(\beta(x))^k$ имеют один порядок, т.е. если

$$\lim_{x \to x_0} \frac{\alpha(x)}{(\beta(x))^k} = C, \quad \text{где } C \subseteq \mathbb{R} \text{ и } C \neq 0.$$

ТЕОРЕМА 6 (о замене бесконечно малых на эквивалентные).

Пусть
$$\alpha(x)$$
, $\beta(x)$, $\alpha_1(x)$, $\beta_1(x) - \delta.м$. при $x \to x_0$. Если $\alpha(x) \sim \alpha_1(x)$, $\beta(x) \sim \beta_1(x)$,

mo

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to x_0} \frac{\alpha_1(x)}{\beta_1(x)}$$

ТЕОРЕМА 7 (о главной части бесконечно малой).

Пусть $\alpha(x)$ и $\beta(x) - \delta$.м. при $x \to x_0$, причем $\beta(x) - \delta$.м. более высокого порядка чем $\alpha(x)$. Тогда

$$\gamma(x) = \alpha(x) + \beta(x) \sim \alpha(x) .$$

Б.м. $\alpha(x)$ называют в этом случае главной частью бесконечно малой $\gamma(x)$.

Замечание. Из 1-го и 2-го замечательных пределов и их следствий можно получить таблицу эквивалентных бесконечно малых функций:

	$\alpha(x) \to 0$ при $x \to a$					
1	$\sin \alpha(x) \sim \alpha(x)$	6	$a^{\alpha(x)}-1\sim\alpha(x)$ lin a			
2	$tg \alpha(x) \sim \alpha(x)$	6a	$e^{\alpha(x)}-1\sim\alpha(x)$			
3	$\arcsin \alpha(x) \sim \alpha(x)$	7	$\log_{\alpha}(1+\alpha(x)) \sim \frac{\alpha(x)}{\ln \alpha}$			
4	$arctg \alpha(x) \sim \alpha(x)$	7a	$ \underline{\ln}(1+\alpha(x)) \sim \alpha(x) $			
5	$1 - \cos \alpha(x) \sim \frac{(\alpha(x))^2}{2}$	8	$(1+\alpha(x))^{\mu}-1\sim \mu \alpha(x)$			

Аналогично бесконечно малым сравниваются и бесконечно большие функции.

А именно, если f(x) и g(x) – бесконечно большие при $x \to x_0$, то

- 1) f(x) называется бесконечно большой более высокого порядка чем g(x) если $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \infty$
- 2) f(x) и g(x) называются **бесконечно большими одного порядка**, если $\lim_{C \neq 0} \frac{f(x)}{g(x)} = C, \qquad \text{где } C \in \mathbb{R} \text{ и}$
- 3) f(x) и g(x) называются эквивалентными бесконечно большими (записывают: $f(x) \sim g(x)$), если $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$
- 4) f(x) называется бесконечно малой порядка k относительно бесконечно большой g(x), если f(x)

$$C \neq 0$$
.

$$\lim_{x \to x_0} \frac{f(x)}{(g(x))^k} = C, \qquad \text{где } C \in \mathbb{R} \text{ и}$$

ТЕОРЕМА (о замене бесконечно больших на эквивалентные).

Пусть
$$f(x)$$
, $g(x)$, $f_1(x)$, $g_1(x) - \delta.\delta$. при $x \to x_0$. Если $f(x) \sim f_1(x)$, $g(x) \sim g_1(x)$,

To
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f_1(x)}{g_1(x)}$$

ТЕОРЕМА (о главной части бесконечно большой).

Пусть f(x) и $g(x) - \delta.\delta$. при $x \to x_0$, причем $g(x) - \delta$ бесконечно большая более высокого порядка чем f(x). Тогда $z(x) = f(x) + g(x) \sim g(x)$.

Б.б. g(x) называют в этом случае главной частью бесконечно большой z(x).