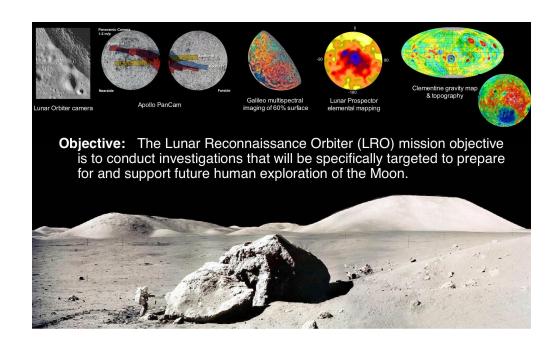

LRO Mission Overview

Craig Tooley - GSFC/431 September 7, 2005


2008 Lunar Reconnaissance Orbiter (LRO) First Step in the Robotic Lunar Exploration Program

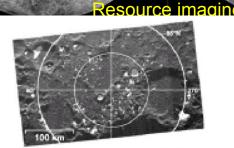
LRO Objectives

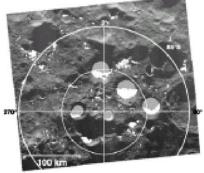
- Characterization of the lunar radiation environment, biological impacts, and potential mitigation. Key aspects of this objective include determining the global radiation environment, investigating the capabilities of potential shielding materials, and validating deep space radiation prototype hardware and software.
- Develop a high resolution global, three dimensional geodetic grid of the Moon and provide the topography necessary for selecting future landing sites.
- Assess in detail the resources and environments of the Moon's polar regions.
- High spatial resolution assessment of the Moon's surface addressing elemental composition, mineralogy, and Regolith characteristics

NASA's Goddard Space Flight Center

Investigation Background

- LRO provides major scientific and exploration benefit by 2009
 - Apollo provided only a small glimpse of Moon; much to be explored
 - LRO address both science and exploration objectives
 - LRO brings many benefits (e.g., future landing sites, polar resources, safety, science)
- LRO selected instruments complement other foreign efforts
 - Six instruments competitively selected ("next-generation payload")
 - Comparison to foreign systems demonstrate uniqueness and value
 - LRO will also accommodate a HQ directed Technology Demonstration payload, the Mini-RF (SAR) instrument.
- LRO will enhance our knowledge of the Moon and increase the safety of future human missions.
 - 3D maps of terrain and hazards, as well as of localized resources (ice) will tell us where to land (and at what precision).
 - Exploration of new sites where resources may be available requires new and timely knowledge of those sites at scales never before possible.
- Current state of knowledge does not allow us to reduce the risk and cost of humans landing and working on the Moon.
 - Equatorial environment (terrain, thermal, lighting) is different from polar region.
 - Apollo Program flight system capability limited to equatorial region (capability)

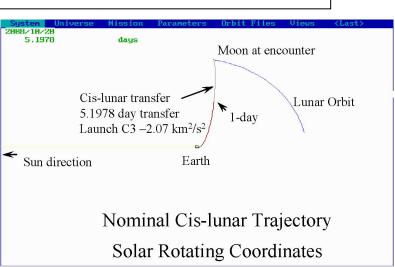


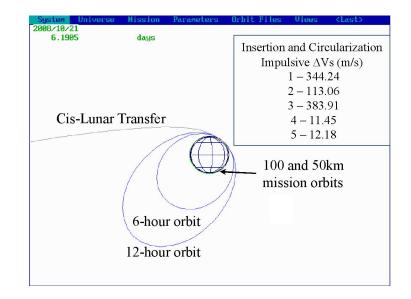


Benefit Example: Identifying Landing Sites & Resources

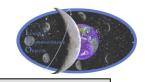
Polar Topography/snadow mapping

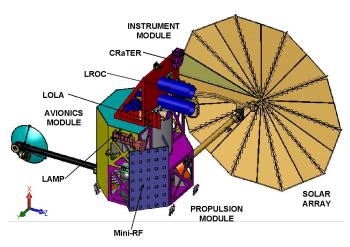
NASA's Goddard Space Flight Center

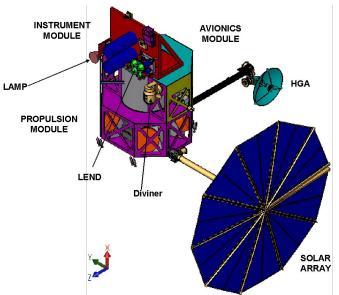



LRO Mission OverviewFlight Plan – Direct using 3-Stage ELV

- Launch in late 2008 on a Delta II rocket into a direct insertion trajectory to the moon.
- On-board propulsion system used to capture at the moon, insert into and maintain 50 km altitude circular polar reconnaissance orbit.
- 1 year mission
- Orbiter is a 3-axis stabilized, nadir pointed spacecraft designed to operate continuously during the primary mission.

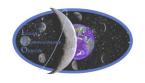





LRO Mission Overview

Orbiter

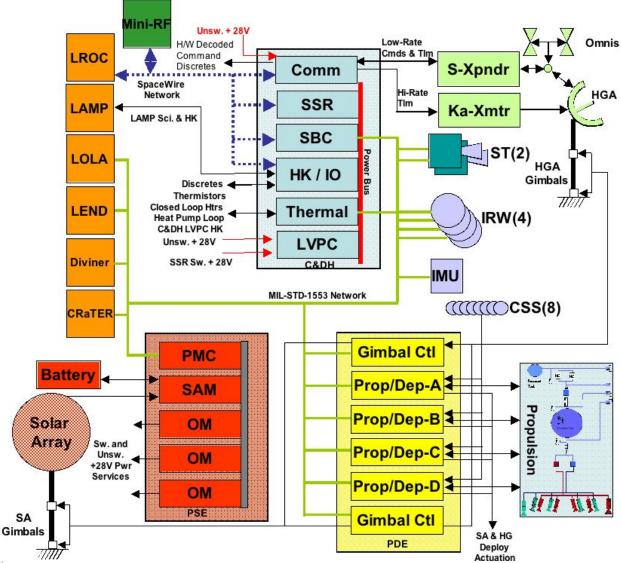
LRO Preliminary Design


LRO Instruments

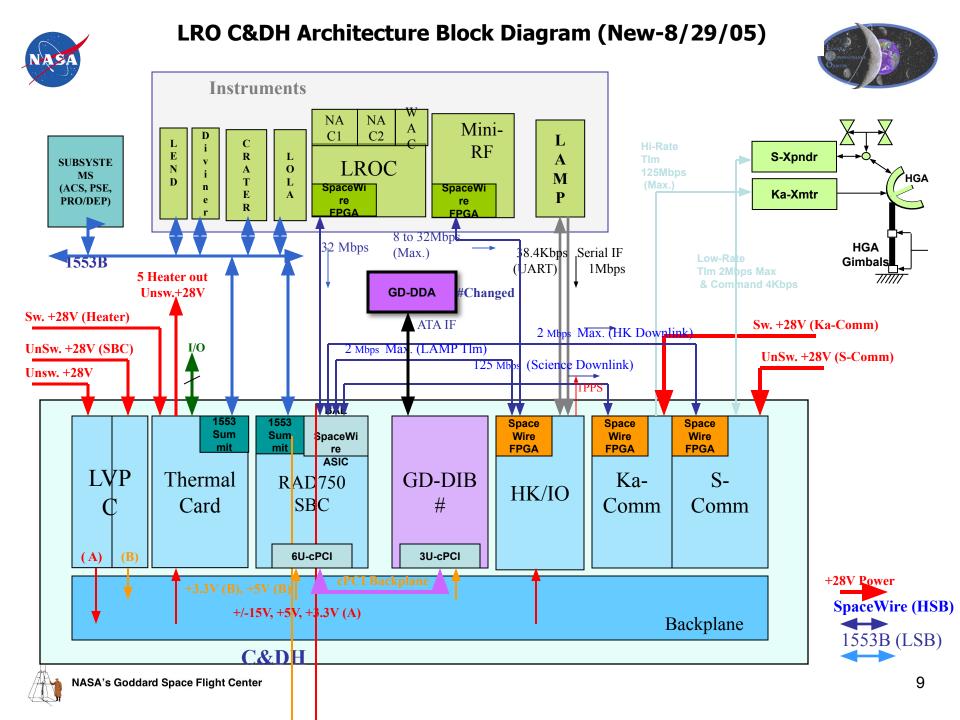
- Lunar Orbiter Laser Altimeter (LOLA) Measurement Investigation – LOLA will determine the global topography of the lunar surface at high resolution, measure landing site slopes and search for polar ices in shadowed regions.
- Lunar Reconnaissance Orbiter Camera (LROC) LROC will acquire targeted images of the lunar surface capable of resolving small-scale features that could be landing site hazards, as well as wide-angle images at multiple wavelengths of the lunar poles to document changing illumination conditions and potential resources.
- Lunar Exploration Neutron Detector (LEND) LEND will
 map the flux of neutrons from the lunar surface to search for
 evidence of water ice and provide measurements of the
 space radiation environment which can be useful for future
 human exploration.
- Diviner Lunar Radiometer Experiment Diviner will map the temperature of the entire lunar surface at 300 meter horizontal scales to identify cold-traps and potential ice deposits.
- Lyman-Alpha Mapping Project (LAMP) LAMP will observe the entire lunar surface in the far ultraviolet. LAMP will search for surface ices and frosts in the polar regions and provide images of permanently shadowed regions illuminated only by starlight.
- Cosmic Ray Telescope for the Effects of Radiation (CRaTER) – CRaTER will investigate the effect of galactic cosmic rays on tissue-equivalent plastics as a constraint on models of biological response to background space radiation.

Prelimina	Preliminary LRO Characteristics				
Mass	1317 kg	Dry: 603 kg			
iviass		Fuel: 714 kg			
Power	745 W				
Measurement Data Volume	575 Gb/day				

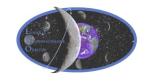
Competitively Selected LRO Instruments Provide Broad Benefits

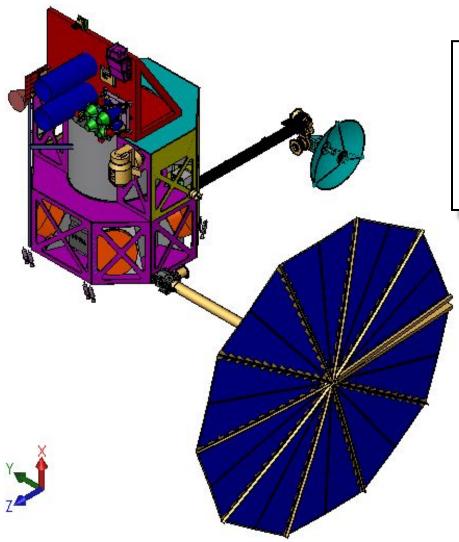


INSTRUMENT	Measurement	Exploration Benefit	Science Benefit	
CRATER (BU+MIT) Cosmic Ray Telescope for the Effects of Radiation	Tissue equivalent response to radiation	Safe, lighter weight space vehicles that protect humans	Radiation conditions that influence life beyond Earth	
Diviner (UCLA)	300m scale maps of Temperature, surface ice, rocks	Determines conditions for systems operability and water-ice location	Improved	
LAMP (SWRI) Lyman-Alpha Mapping Project	Maps of frosts in permanently shadowed areas, etc.	Locate potential water- ice (as frosts) on the surface	understanding of volatiles in the solar system - source, history, migration and deposition	
Russia) Lunar Exploration Neutron Detector	Hydrogen content in and neutron radiation maps from upper 1m of Moon at 5km scales, Rad > 10 MeV	Locate potential water- ice in lunar soil and enhanced crew safety		
LOLA (GSFC) Lunar Orbiter Laser Altimeter	~50m scale polar topography at < 1m vertical, roughness	Safe landing site selection, and enhanced surface navigation (3D)	Geological evolution of the solar system by geodetic topography	
NWU+MSSS) Lunar Recon Orbiter Camera	1000's of 50cm/pixel images (125km²), and entire Moon at 100m in UV, Visible	Safe landing sites through hazard identification; some resource identification	Resource evaluation, impact flux and crustal evolution	



LRO Spacecraft Systems Block Diagram




C&DH	Command & Data Handling	
Comm	Communications	
CRaTER	Cosmic Ray Telescope for the Effects of Radiation	
css	Coars e Sun Sens or	
EVD	Engine Valve Driver	
HGA	High-Gain Antenna	
H/W	Hardw are	
HK	Housekeeping	
Ю	Input/Output	
IMU	Integrated Momentum Unit	
IRW	Integrated Reaction Wheel	
LAMP	Lyman-Alpha Mapping Project	
LEND	Lunar Exploration Neutron Detector	
LOLA	Lunar Orbiter Laser Altimeter	
LROC	Lunar Reconnaissance Orbiter Camera	
LVPC	Low Voltage Power Converter	
ОМ	Output Module	
PDE	Propulsion Deployable Bectronics	
PMC	Power Management Controller	
PSE	Power System Bectronics	
SA	Solar Array	
SAM	Solar Array Module	
ST	Star Tracker	
SBC	Single Board Computer	
SSR	Solid State Recorder	
Xmtr	Transm itter	
Xpndr	Transponder	
Mini-RF	7	

LRO Spacecraft Systems Capabilities

LRO Overview

- 6 Instruments and 1 Technical Demonstration
- 3 Spacecraft Modules Instrument, Propulsion, Avionics
- 2 Deployable Systems High Gain Antenna, Solar Array
- 2 Data Buses Low Rate 1553, High Rate Spacewire
- 2 Comm Links S Band, Ka Band

Monopropellant System – Hydrazine, Single Tank design

LRO Capability Highlights

Mass: 1480 kg

Power: 823 W orbit average @ 35V

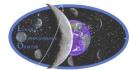
Battery: Lithium Ion Chemistry

80 Amp-Hour Capacity

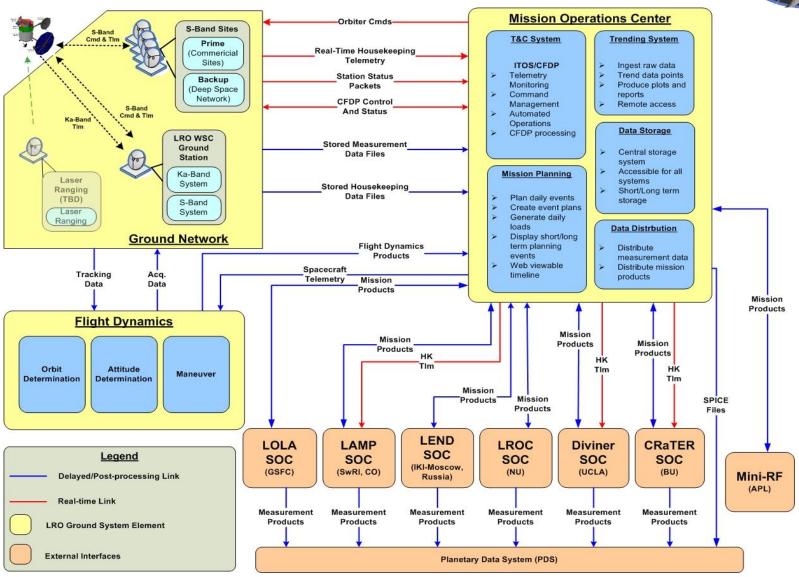
Data Storage Capacity: 400 Gb

Data Rate: 100 Mbps Down – Ka Band

2.186 Mbps Up/Down – S Band

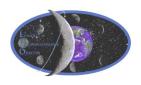

Timing relative to UTC: 3ms Delta V Capability: 1326 m/sec

Pointing Accuracy: 60 Asec relative to GCI Pointing Knowledge: 30 Asec relative to GCI



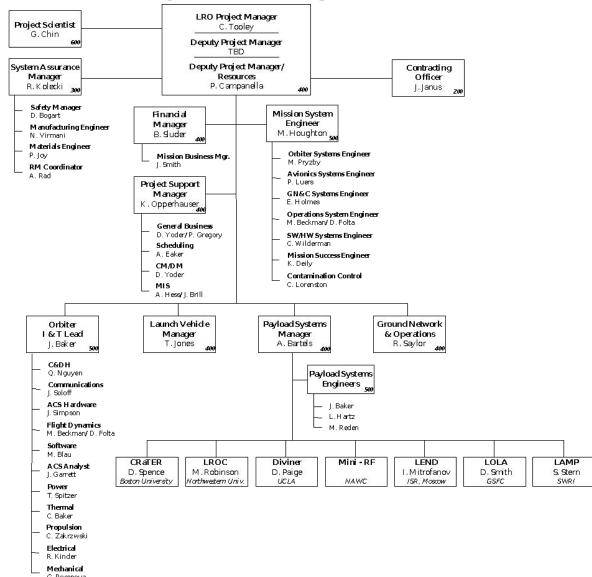
Ground System Architecture Overview

11



NASA's Goddard Space Flight Center

LRO Mission Phases Overview

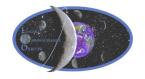


No	Phase	Sub-Phases	Description	
1	Pre-Launch/ Launch Readiness	☐ Space Segment Readiness ☐ Ground Segment Readiness	Includes instrument I&T, spacecraft/orbiter I&T, space/ground segment testing as well as operations preparation and ground readiness testing leading up to launch.	
2	Launch & Lunar Transfer	 □ Launch and Ascent □ Separation and De-spin □ Deployment and Sun Acq. □ Lunar Cruise □ Lunar Orbit Insertion 	Includes all activities & operations from launch countdown sequence to Lunar Orbit Insertion (LOI). LOI includes all maneuvers necessary to obtain the temporary parking orbit for Orbiter activation and commissioning. During the cruise phase, initial spacecraft checkout will be performed to support activities for mid course correction (MCC) and LOI.	
3	Orbiter Commissioning	☐ Spacecraft Commissioning☐ Integrated InstrumentCommissioning	Configure and checkout the spacecraft subsystems and ground systems prior to instrument turn-on. Instrument integrated activation will be developed to complete instruments turn-on and commissioning. Instrument commissioning includes any calibration activities needed in the temporary orbit.	
4	Routine Operations	 □ Measurements (Routine Ops) □ Station-keeping □ Momentum Management □ Instrument Calibrations □ Lunar Eclipse □ Yaw Maneuver □ Safe Mode 	One year of nominal science collection in the 50 (+/- 20) km orbit.	
5	Extended Mission Operations		After 1-year of science observations, orbiter will be boosted into a higher orbit to reduce maintenance requirements. Potential purpose for extended mission operations may be to perform relay comm. operations. Alternatively additional measurement operations may be performed for a shorter period in a continued low orbit.	
6	End-of-Mission Disposal		Includes planning and execution of end-of-life operations. LRO will impact lunar surface.	

LRO Project Organization

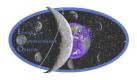
08/31/2005

LRO Mission Schedule



Mission PDR target: November 14 Ver. 0.9 7/31/05 2005 2006 2007 2008 2009 2004 G3 G1 02 Ø3 Ø1 Q1 02 Q1 02 O1 Q1 FOR ORR A A PSR IPOR / POR ICOR / COR Launch AO Release MOR **LRO Mission Milestones** IPSR IBR 🛧 Conf. PER MRR ALRR AO Sel. MRD Review Mission Feasibility Definition Payload Proposal Development 19/6-9/29 Payload Preliminary Design System Definition S/C &GDS/OPS Preliminary Design Payload Design (Final) Spacecraft Design (Final) Network Dedision GDS/OPS Definition/ Design Payload Fab/Assy/Test Payload complete (Final Delivery to I&T) (LAMP/LOLA/LROC/Diviner/CraTer/LBID/Mini-RF) (7 Instruments) S/C Fab/Assy/Bus Test S/C complete (Final delivery to I&T) GND Net Test Ready GDS/OPS Development Implemention & Test Payload (INTFloat) S/C BU\$ Ship to KSC Integration and Test (IMFloat) Launch Launch Site Operations Mission Operations

LRO Project Overall Status



- Project almost fully staffed
 - 45 civil servants & 23 support contractor at present (FTEs & WYEs)
 - Project level augmentations in-work as Program/Project resources are phased out.
- Project infrastructure in-place
 - Project organization and staffing being adjusted in reaction to RLEP transfer to ARC
- Project Plan drafted for November 2004 Program review
 - Currently being revised to reflect RLEP move to ARC & to comply with NPR 7120.5 rev. C
- Mission SRR successfully conducted August 16-17
- Major system trades nearly complete
 - C&DH Architecture ✓
 - Propulsion System 🗸
 - Ground Network
 - Data Recorder Technology
 - High Accuracy Tracking Methodology
- Level 2 & Level 3 Requirements established and moving thru review/approval cycles – SRR successfully completed
- Overall integrated mission development schedule developed and in review
 - Baselined after PDR in preparation for Confirmation

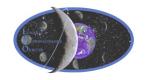
LRO Element Development Status

- Instruments high heritage proposed designs converging to preliminary designs
 - Design efforts primarily focused in two areas
 - · Design modifications to adapt to LRO command/data interfaces
 - Design modifications driven by lunar thermal environment
 - Low lunar polar orbit is significantly different than Mars missions where most instrument heritage is from.
 - Interfaces with spacecraft well defined ICDs in review/release cycle
 - Allocations released and agreed upon
 - LRO Payload Science Working Group formed and functioning
 - Consists of PI's lead by LRO Project Scientist
 - Integral part of LRO mission operations planning

Spacecraft bus – AO design concept evolving to preliminary design

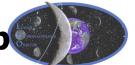
- All subsystems on track for mission PDR this Fall
 - Propulsion subsystem moved in-house at GSFC leverages HST-DM surplus hardware
 - Spacecraft Computer specified and under development on ESES contract
 - SQ-RAID (hard disk) technology selected for data recorder. Acquisition now in-work.
 - Subsystem technical Peer Review being conducted Sept. November
 - Approximately \$15M in direct procurements planned during Sept.-Dec.

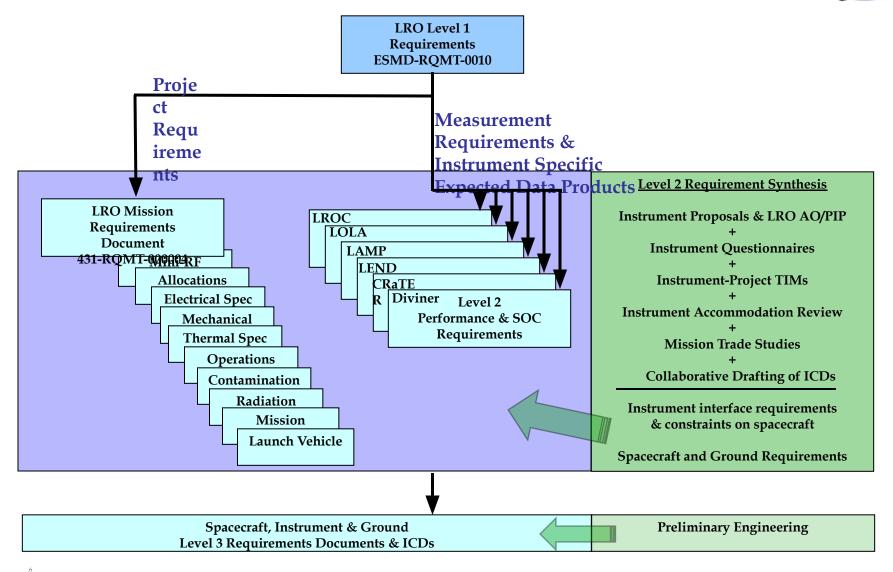
Ground Systems – architecture and acquisition approach defined


- Mission Operations Center
 - Preliminary design established based on GSFC heritage systems
 - · Location established, initial facility agreements in-place
- Ground Network
 - · Requirements and architecture established
 - Primary 18m antenna procurement contract in place
 - GSFC Ground Networks providing end-to-end system
 - Development tasks on NENS contract established
 - SRR Planned for November

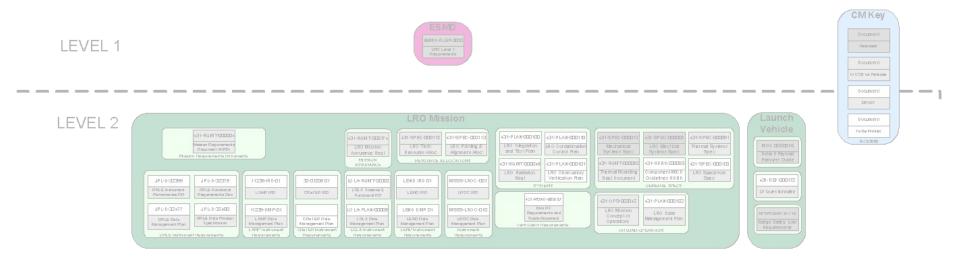
16

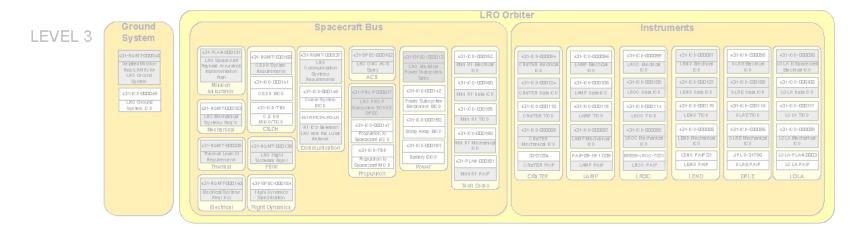
LRO Requirements



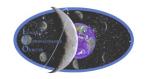

- Mission SRR held 9/16-17/2005 judged very successful
 - Review covered development and flow down of level 2 and 3 requirements from the NASA ESMD Level 1 requirements
 - Instruments presented flow down of Level 1 measurement and data product requirements to their level 2 and 3 performance and functional requirements
 - Project presented flow down of level 2 and 3 mission, spacecraft, and ground system requirements
 - ~ 50 RFAs/Comments, none specific to instruments.
 - Level 1 requirements being refined by ESMD with Project and assistance.
 - Ongoing work includes establishment of Mission Success Criteria
 - SRR demonstrated that instrument requirements are established, understood, and realizable.

LRO Requirements Development Roadmap

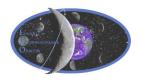


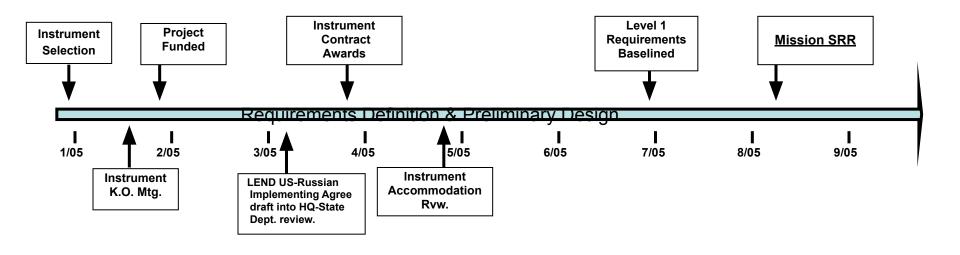


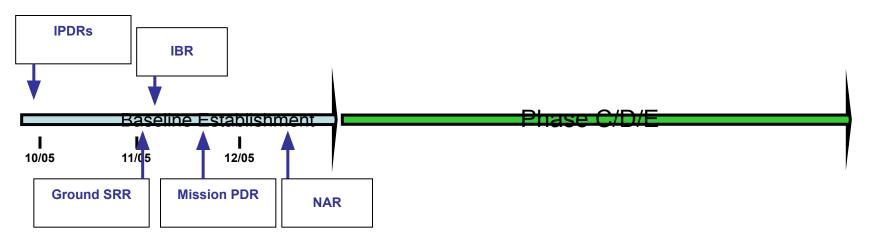
LRO Mission Requirements Hierarchy



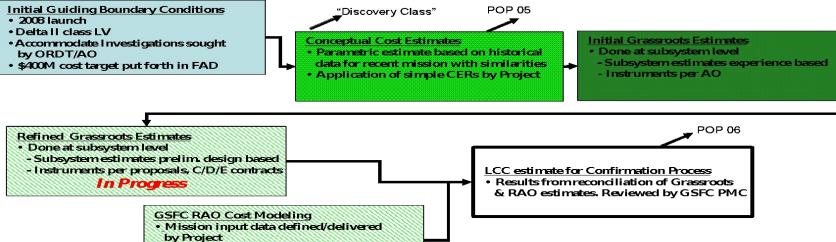
LRO Overview




Back-Ups



LRO Timeline to Confirmation


LRO Lifecycle Cost Estimate

LRO LCC estimate is in process.

In Progress

Initial Cost Estimate (\$M)				
Management & Sys. Engr.		25		
Spacecraft		120		
Instruments	CRaTER	6.8		
	Diviner	11.9		
	LAMP	5.5		
	LEND	5.1		
	LOLA	19.7		
	LROC	17.3		
Launch Vehicle		90		
Ground Network/MOC & Mission Ops.		39		
I&T		11		
Reserve		56		
Total		407		

NASA's Goddard Space Flight Center