
POCKOCMOC

Стратегии развития космической деятельности до **2030** года

Тирский И. И. «Астрономия» vk.com/lifestyleastronomy

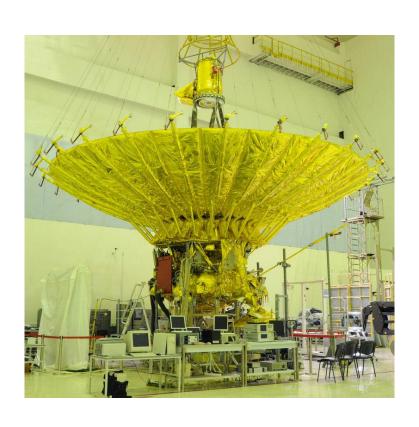
17 ноября 2012

42 года «Луноход-1» - первому в мире планетоходу.

Зачем нам космос?

- * Космические обсерватории;
- * AMC;
- * Сеть спускаемых аппаратов на тела СС;
- * Орбитальные аппараты (ИС тел СС).

Космические телескопы XXI века


Действующие обсерватории:

* Радиоастрон (Спектр-Р) 2011 http://www.asc.rssi.ru/radioastron/

Будущие проекты:

- * Спектр-РГ 2014 http://hea.iki.rssi.ru/SRG
- * Спектр-УФ (ВКО-УФ) 2016 <u>http://wso.inasan.ru</u>
- * FAMMA-400 2018 http://gamma400.lebedev.ru/
- * Миллиметрон (Спектр-M) 2020 http://asc-lebedev.ru/

Радиоастрон

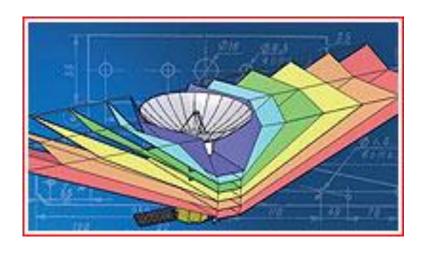
SRT antenna in Lavochkin Association (2011)

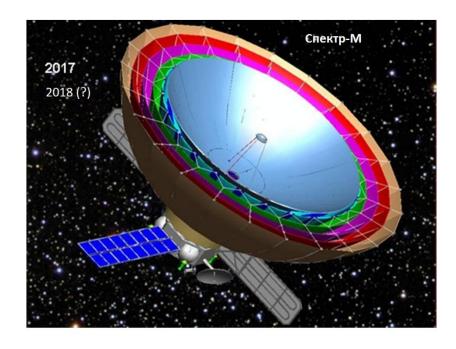
Радиоинтерферометр

«Миллиметрон» (Спектр-М)

- 2008 Проектирование. Полет к 2014-2015.
- * 2010 Завершения проектирования.
- * Июль 2011 Поповкин срок 2017-2018.
- * 2012 директор НПО им. Лавочкина после 2020, т.к. по его словам он будет позже «ГАММА-400» (2018).
- * Август 2012 НПО им. Лавочкина 2020.

Хара ктеристики разрабатываемых крупногабаритных телескопов

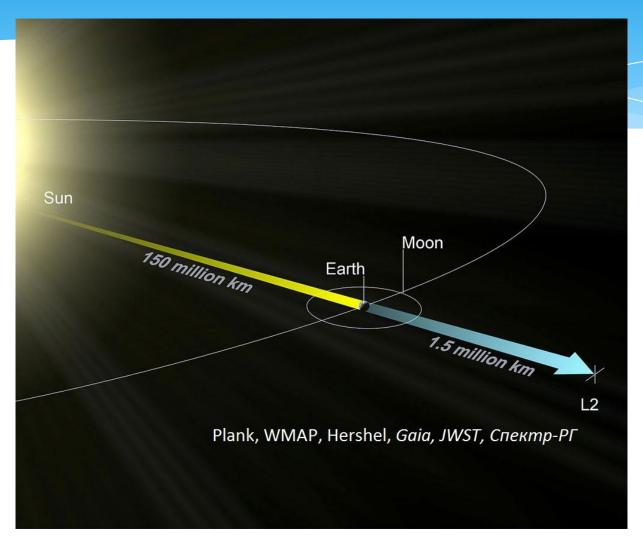

Проекты	Год запуска	Орбита	Диапазон длин волн						
				диаметр (м)	ти <mark>п</mark>	материал	регулируе- мость	Примечание	
JWST	2018	L2	0.6-28.3 мкм	6.5	складное	бериллий	адаптивная настройка на орбите	рефлектор 45 К, приемники 7 К (США, Европа, Канада)	
Миллиметрон	2017	L2	0.02-3 мм 0.3-16 мм	10.0	складное	вы сокомо- дульный углепластик	адаптивная настройка на орбите	рефлектор 4.5 K, приемники 0.1 K (Россия, Европа)	
SPICA	2018	L2	5-210 мкм	3.5	цельное	карбид кремния	_	рефлектор < 6 К, приемники 0.1 К (Япония, Европа)	


Проект «Спектр-М»

К октябрю 2012 года ИСС Решетнева за вершило исследования по выбору материалов, конструкции систем отвода тепла, компонентов телескопа (для работы при температурах -269 градусов по Цельсию) и наземного оборудования.

В 2013-2015 будут испытаны компоненты телескопа.

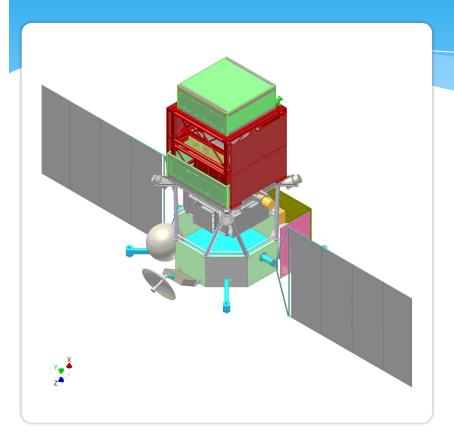
БЫЛО СТАЛО



Направления исследований

- * Солнечная система (кометы, астероиды, планеты, облако Оорта, пояса Ван Аллена);
- * Черные дыры, кротовые норы, тёмная материя, тёмная энергия;
- * Внегалактические свехновые, гравитационные линзы;
- * Астроинженерная деятельность;
- Реликтовое излучение.

Орбита


ΓΑΜΜΑ-400

* Почему 400?

	Fermi-LAT	FAMMA-400		
Орбита	560 км	500-300000 км		
Диапазон энергий	100 МэВ - 300 ГэВ	100 МэВ - 3000 ГэВ		
Чувствительная площадь	1,8 m ²	0,64 m ²		
Координатные детекторы	Si стрипы с шагом 0,23 мм	Si стрипы с шагом 0,1 мм		
Угловое разрешение (E _V > 100 ГэВ)	~0,1°	~0,01°		
Калориметр - толщина, р.е.д.	CsI 8,5	BGO + CsI(TI) + Si стрипы ~25		
Энергетическое разрешение (E _V > 10 ГэВ)	~10%	~1%		
Режекция протонов	10 ⁴	~10 ⁶		
Вес, кг	2900	2600		
Объем передаваемой информации, Гбайт/сутки	20	100		

	КОСМИЧЕСКИЕ ГАММА-ТЕЛЕСКОПЫ					НАЗЕМНЫЕ ГАММА-ТЕЛЕСКОПЫ			
	EGRET	AGILE	Fermi- LAT	CALET	FAMMA-400	H.E.S.SII	MAGIC	VERITAS	CTA
	США	Италия	США	Япония	РОССИЯ	Намибия	Испания, Канарские о-ва	США, Аризона	
Диапазон энергий, ГэВ	0,03-30	0,03-50	0,2-300	10-10000	0,1-3000	>30	>50	>100	>20
Угловое разрешение (Е _ү > 100 ГэВ)	0,2° (Е _ү ~0,5 ГэВ)	0,1° (Е _ү ~1 ГэВ)	0,1°	0,1°	~0,01°	0,07°	0,07° (Е _ү =300 ГэВ)	0,1°	0,1° (E _Y =100 ГэВ) 0,03° (E _Y =10 ТэВ)
Энергетическое разрешение (Е _ү > 100 ГэВ)	15% (Е _ү ~0,5 ГэВ)	50% (Е _ү ~1 ГэВ)	10%	2%	~1%	15%	20% (Е _ү =100 ГэВ) 15% (Е _ү =10 ТэВ)	15%	20% (Е _ү =100 ГэВ) 5% (Е _ү =10 ТэВ)

УТВЕРЖДАЮ

Директор

Учреждения Российской академии наук

Физического института

им. П.Н. Лебедева РАН

09 г.

ПРОЕКТ ГАММА-400

ИССЛЕДОВАНИЕ КОСМИЧЕСКОГО ГАММА-ИЗЛУЧЕНИЯ И ПОТОКОВ ЭЛЕКТРОНОВ И ПОЗИТРОНОВ В ДИАПАЗОНЕ ЭНЕРГИЙ 1-3000 ГэВ

От ФИАН

Руководитель научного направления

калемик

Гинзбург В.Л.

_ 2009 г.

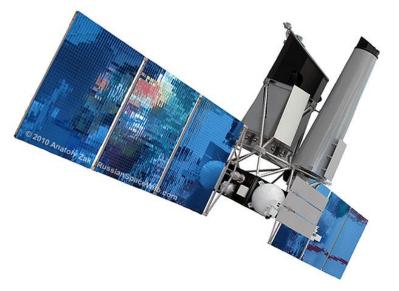
Научный руководитель проекта

ΓΑΜΜΑ-400

профессор, г.н.с.


Гальпер А.М.

мая 2009 г.

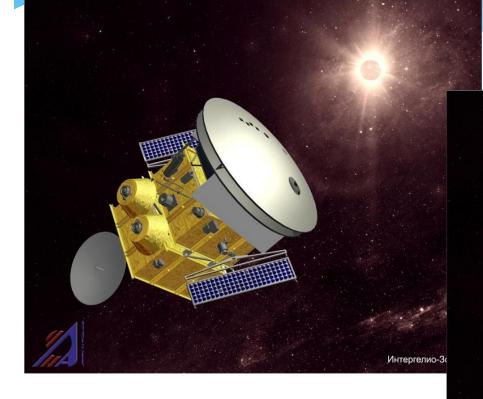

Москва, 2009 г.

Спектр-РГ

- * Исследование в рентгене и гамма.
- * Черные дыры, нейтронные звёзды, обзор неба, вспышки сверхновых, ядра галактик, скопления галактик.
- * Актуальность до 2015. Запуск 2014.
- * Стоимость 5 миллиардов рублей.

AMC

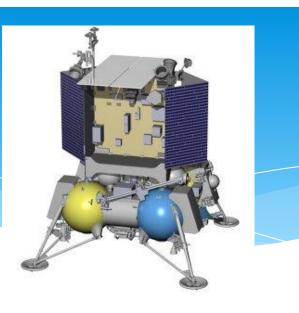
Действующие АМС:

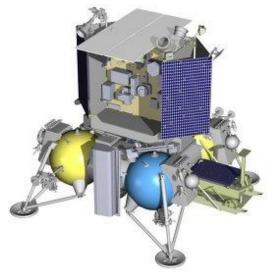

* Нет 😕 (Потеря «Фобос-Грунт») 2011

Будущие миссии:

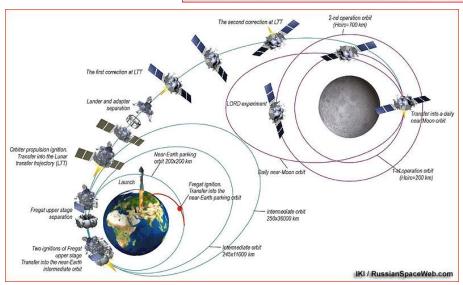
- * Луна-Глоб 2015 (+посадочный аппарат);
- Интергелиозонд 2015;
- * MetNet (MarsNet) 2016;
- * Луна-Ресурс 2017 (1, 2, 3, 4) http://www.lr.cosmos.ru/;
- * Сатурн-ТЭ 2017 (НИР) http://stp.cosmos.ru;
- * Апофис-П 2020;
- * Венера-Глоб 2020 (+аэростатные зонды) (нереализуем в ближайшее время);
- * Фобос-Грунт-2 2020 (21?) «Бумеранг»;
- * Марс-Грунт 2022;
- * Лаплас-П 2022;
- * Луна-Грунт 2023;
- * Венера-Д 2024+ (посадочный аппарат, орбитальный аппарат, малый спутник);
- * Меркурий-П 2031 (+посадочный аппарат);
- * Апофис-Грунт?

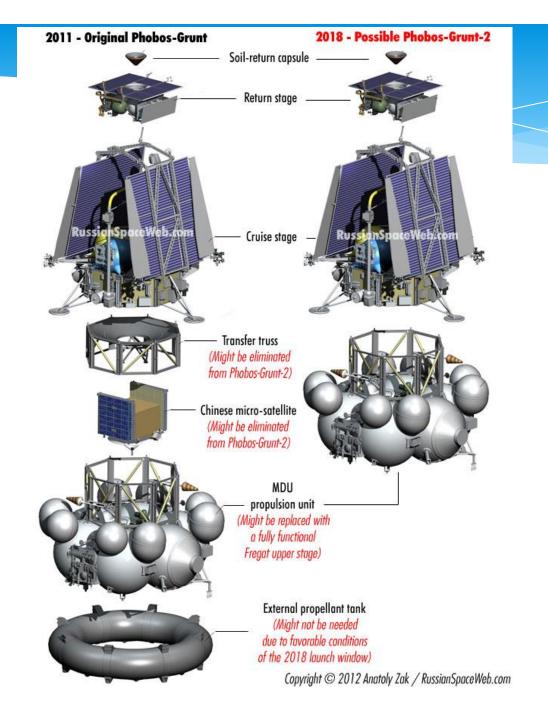
Интергелио-Зонд


2 аппарата для надёжности!

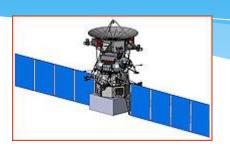


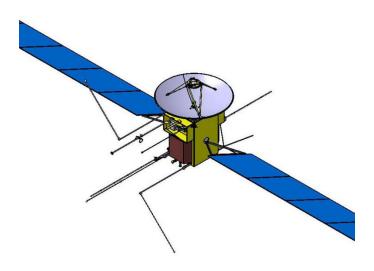
22 октября одобрен эскизный проект


Луна


Фобос-Грунт ver. 2.0

Задача доставки грунта со спутника Марса — Фобоса по-прежнему актуальна. Российские ученые и представители Академии наук считают, что в ближайшие десять лет никакими другими международными программами эту задачу не решить. Поэтому мы рассчитываем на проект «Фобос-Грунт-2». У нас нет другого пути: Россия должна решить задачу полёта на Марс.


Хартов Виктор Владимирович, конструктор и генеральный директор ФГУП «НПО им. С.А. Лавочкина.

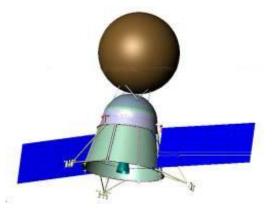


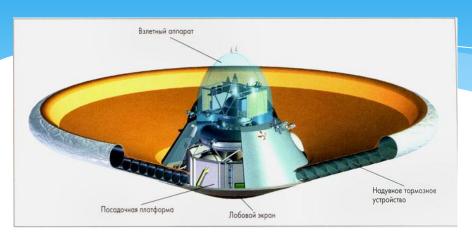

Миссия на Фобос

- * До 2018 года 2 лунных миссии (апробация и отработка систем управления);
- * Часть приборов на ExoMars (для попутного исследования Марса);
- * Не будет разрезаться разгонный блок (без усечённой части);
- * Часть системы управления на центральный процессор. Улучшение служебного модуля.
- * Стоимость будет выше на 2 миллиарда рублей.

Миссия JUICE/Laplace

Миссия JUICE/Laplace

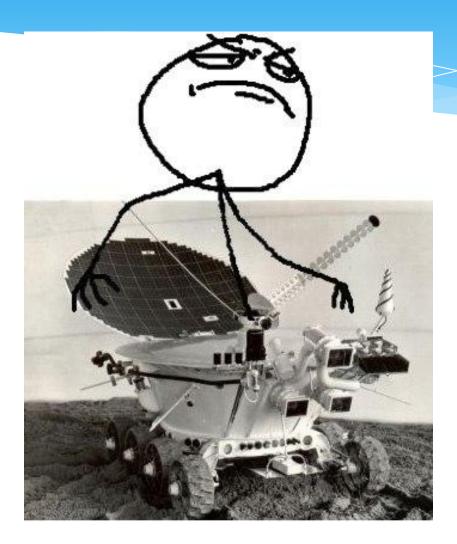



Венера-Глоб

Из-за технических трудностей неосуществима в ближайшие десятилетия:

- * Атмосферный зонд с переменной высотой полёта
- * Долгоживущая станция на поверхности Венеры
- * Орбитальный аппарат

Марс-Грунт



20 лет...

Насреддин рассказывает, что как-то раз поспорил с эмиром бухарским, что научит своего ишака богословию так, что ишак будет знать его не хуже самого эмира. На это нужен кошелёк золота и двадцать лет времени. Если он не выполнит условия спора — голова с плеч. Насреддин не боится неминуемой казни: — «Ведь за двадцать лет», — говорит он, — «кто-нибудь из нас троих обязательно умрёт — или эмир, или ишак, или я. А тогда поди разбирайся, кто из нас троих лучше знал богословие!!»

Луноход-2 – 37 километров!

vk.com/curiosity_live