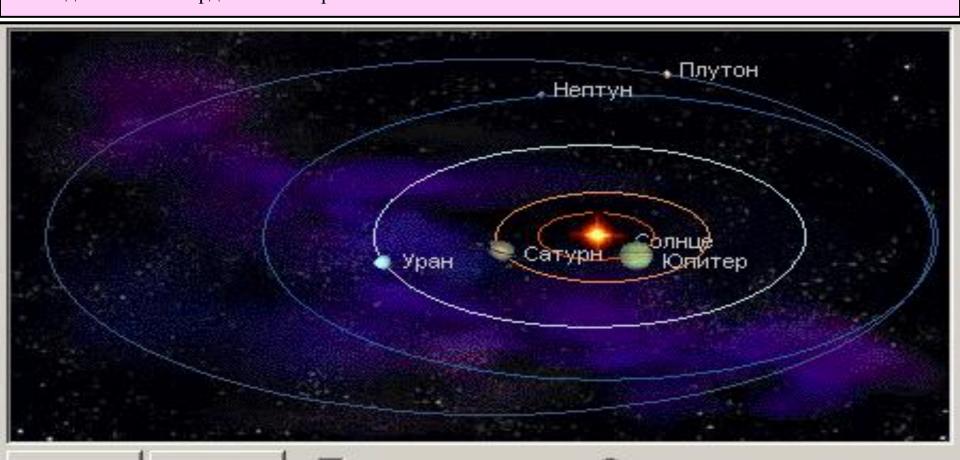

Урок «Солнечная система»

Материал подготовлен учителем ГОУ СОШ № 903 г. Москвы Степанюк Еленой Александровной 2007 год


<u>pptcloud.r</u>

Солнечная система

Планеты и их спутники

Солнечная система представляет собой большую семью, состоящую из Солнца, планет и их спутников, комет, астероидов, большого количества пыли, газа и мелких частиц. Если посмотреть на Солнечную систему как бы издалека, то можно увидеть, как около центральной звезды желтого цвета спектрального класса G2 обращаются 9 планет. Солнце — это звезда, огромный газовый шар, в центре которого идут ядерные реакции. Основная доля массы Солнечной системы сосредоточена в Солнце — 99,8%. Именно поэтому Солнце удерживает гравитацией все объекты Солнечной системы, размеры которой не менее шестидесяти миллиардов километров.

Планеты и их спутники

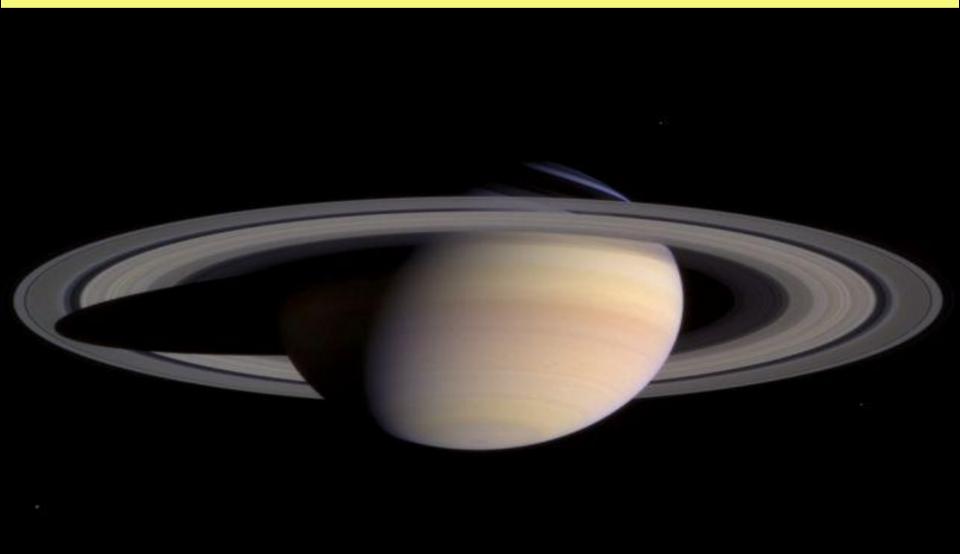
Размеры орбит планет трудно представить на одном рисунке: настолько различны расстояния и размеры. Поэтому обычно сравнивают средние размеры и расстояния от Солнца планет земной группы, а потом — планет-гигантов. Совсем рядом с Солнцем обращаются четыре маленьких планеты, состоящие, в основном, из горных пород и металлов —

Меркурий, Венера, Земля и Марс.

Эти планеты называются планетами земной группы.

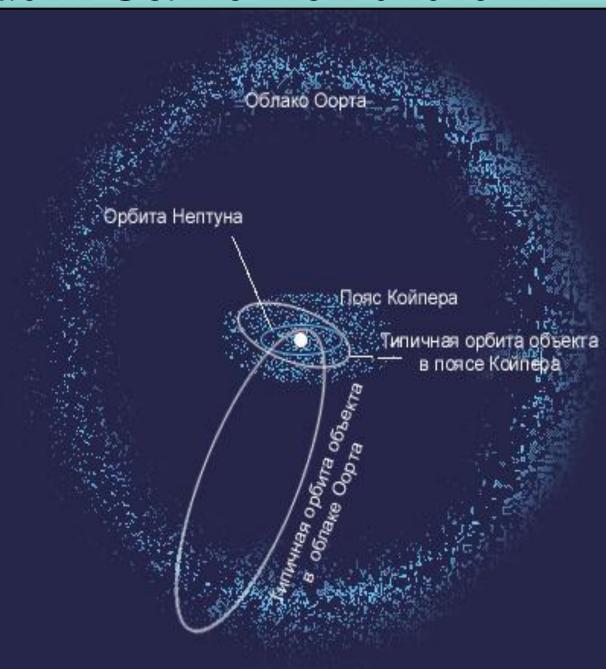
Между планетами земной группы и планетами-гигантами расположен пояс астероидов.

Чуть дальше расположены четыре больших планеты, состоящие, в основном, из водорода и гелия. У *планетегигантов* нет твердой поверхности, зато они имеют исключительно мощную атмосферу.

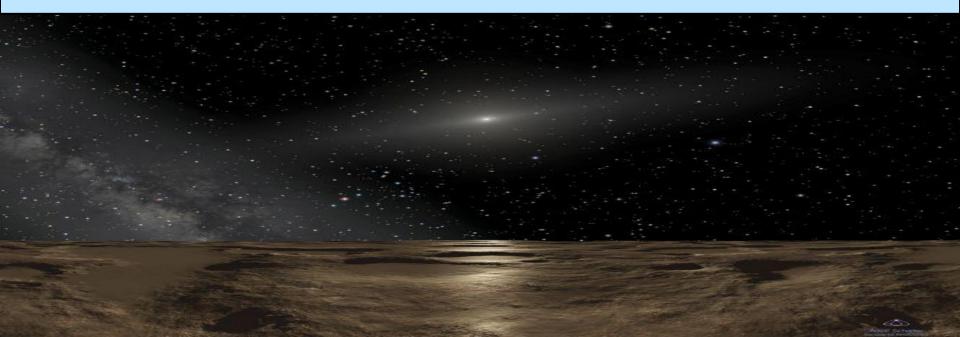

Юпитер – самая большая из них.

Далее следуют Сатурн, Уран и Нептун.

Сатурн


Все планеты-гиганты имеют большое количество спутников, а также кольца. Изумительное по красоте кольцо имеет Сатурн.

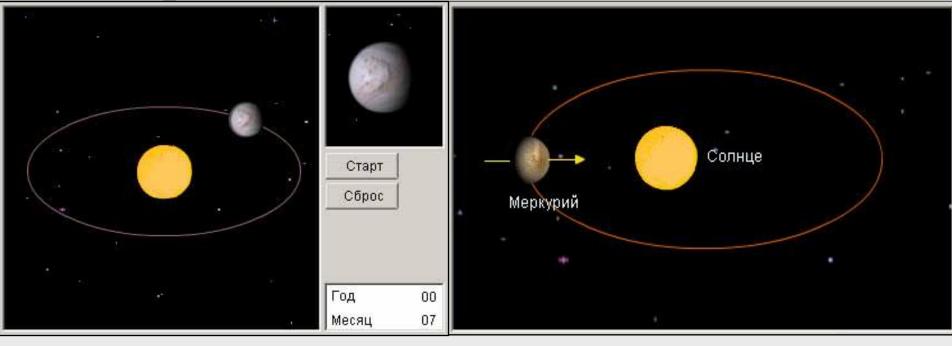
Внешние области Солнечной системы


За орбитой Плутона открыт так называемый пояс Койпера, второй пояс астероидов.

Кометы проводят за орбитой Нептуна большую часть времени, так как в более дальней точке своей траектории их движение более медленное, чем около Солнца.

Различие планет по физическим свойствам

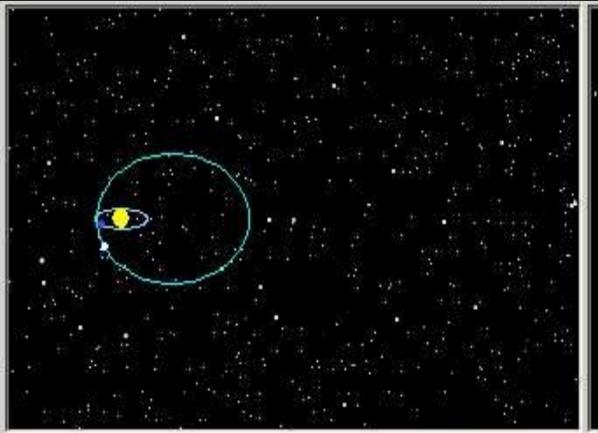
- Различие планет по физическим свойствам, вероятно, обусловлено тем, что планеты земной группы формировались из протопланетного облака рядом с Солнцем. Именно поэтому в них много более тяжелых элементов, металлов, например железа. Планеты-гиганты формировались на более далеких расстояниях от Солнца, поэтому, в основном, состоят из легких элементов.
- В настоящее время на планетах и астероидах Солнечной системы активно ищутся следы жизнедеятельности организмов.



Есть ли ещё такие системы?

Солнечная система — не единственная планетная система во Вселенной. В последние годы обнаружено более пятидесяти планет, с массами 0,15—17 M, вращающихся вокруг расположенных вблизи Солнца звезд. Вокруг нескольких из них вращается сразу две крупные планеты. Одной из самых интересных из открытых систем является є Эридана. Эта звезда очень похожа на наше светило, юпитероподобная планета обращается вокруг нее примерно на таком же расстоянии, как пояс астероидов вокруг Солнца. В отличие от прочих известных экзопланет эта находится достаточно далеко от звезды, что дает шанс получить непосредственную фотографию планеты и обнаружить другие, более близкие к звезде и, возможно, более похожие на Землю планеты.

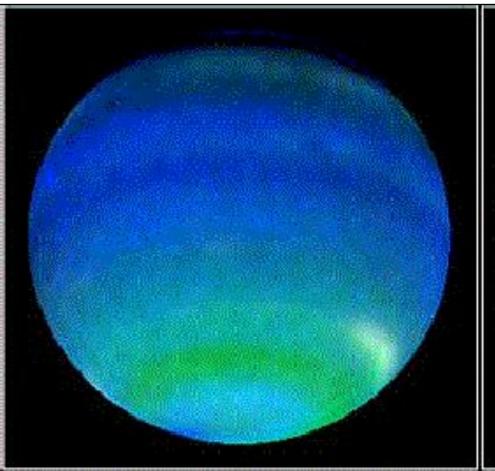
Вращение Солнечной системы

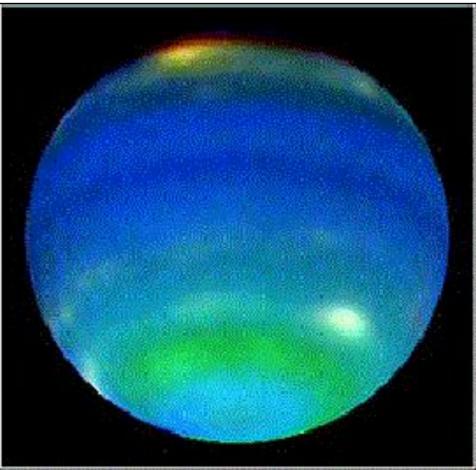


Все планеты, астероиды, кометы вращаются вокруг Солнца в одном направлении (против хода часовой стрелки, если смотреть с северного полюса мира).

Орбиты планет практически круговые, их плоскости мало наклонены к плоскости орбиты Земли. Только планета Меркурий имеет орбиту с большим наклоном к эклиптике.

Вращение Солнечной системы


- Орбиты же комет вытянутые, имеют большой эксцентриситет. Большинство объектов Солнечной системы вращаются вокруг своей оси в одном направлении, которое называется прямым. Однако Венера вращается в обратном направлении, а Уран вращается, как говорят, «лежа на боку».
- Почти все спутники обращаются вокруг планеты в том же направлении, что и планеты вокруг Солнца. Исключение составляют спутники Юпитера, чьи названия заканчиваются на «е» Карме, Синопе, Ананке, Пасифе, и спутник Нептуна Тритон. По-видимому, все они образовывались не вместе со своими планетами, а были захвачены ими позже.



Вращение планет

• Дни и годы на каждой из планет различны по своей продолжительности. Все планеты вращаются вокруг Солнца с разными скоростями. Самая большая скорость у Меркурия. Самые длинные сутки на Венере, они продолжаются 243 земных суток. Планеты-гиганты вращаются вокруг своей оси очень быстро. Продолжительность суток на Юпитере всего 9,92 часа.

Происхождение Солнечной системы

Раздел астрофизики, изучающий происхождение небесных тел и их систем, называется космогонией. Астрономы прошлого предложили множество теорий образования Солнечной системы, а в сороковых годах XX века советский астроном Отто Шмидт предположил, что Солнце, вращаясь вокруг центра Галактики, захватило облако пыли. Из вещества этого огромного холодного пылевого облака сформировались холодные плотные допланетные тела — планетезимали. Элементы этой теории используются в современной космогонии.

Согласно компьютерным расчетам, первоначальная масса газопылевого облака, в котором образовалась Солнечная система, была более $104\ M$. Первоначальный размер облака существенно превышал размеры Солнечной системы, а его состав был аналогичен тому, что наблюдается в плотных холодных межзвездных туманностях, то есть $99\ \%$ межзвездного газа и $1\ \%$ межзвездной пыли.

От Канта до Джинса


Астрономы древности полагали, что Вселенная и Солнечная Система существовали вечно и будут существовать еще столько же в неизменном виде. С появлением христианства возраст Солнечной системы значительно уменьшился. Джордано Бруно первым предположил, что звезды, подобно Солнцу, окружены планетными системами, которые непрерывно рождаются и умирают.

Немецкий философ <u>Иммануил Кант</u> в 1755 году впервые изложил идею о возникновении Солнечной системы из облака холодных пылинок, находящихся в хаотическом движении. Планеты по Канту формируются из того же газопылевого облака, что и Солнце.

В 1796 году французский ученый Пьер Симон Лаплас описал образование Солнца и Солнечной системы из медленно вращающейся раскаленной газовой туманности. Под действием гравитации центральная часть протосолнца сжималась, скорость его вращения увеличивалась, поэтому оно приобретало сплюснутую форму. Сгустки отделялись от протосолнца и затем охлаждались. Вещество, из которого образовались планеты, первоначально по Лапласу было в горячем, расплавленном состоянии. Предложенная в 1916 году Джеймсом Джинсом новая теория, согласно которой вблизи Солнца прошла звезда и ее притяжение вызвало выброс солнечного вещества, из которого в последующем образовались планеты. Однако в настоящее время специалисты не поддерживают эту теорию. В 1935 году Рассел предположил, что Солнце было двойной звездой. Вторая звезда была разорвана силами гравитации при тесном сближении с другой, третьей звездой.

В сороковых годах XX века советский астроном <u>Отто Шмидт</u> предположил, что Солнце захватило при обращении вокруг Галактики облако пыли. Из вещества этого огромного холодного пылевого облака Сформировались холодные плотные допланетные тела – планетезимали.

