Первый закон Менделя

P: \(\text{\$\ext{\$\text{\$\exititt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\

Дигибридное скрещивание. Закон независимого наследования. Сцепленное наследование. Половые хромосомы и их гены.

Домашнее задание

§40-41, конспект в тетради, С.192 (1,2)

Дигибридное скрещивание

Если две особи отличаются друг от друга по двум признакам, то скрещивание между ними называется дигибридным.

Полигибридное скрещивание

Скрещивание особей, различающихся по многим признакам, называется полигибридным.

Опыт Менделя

P: \bigcirc AABB \times \bigcirc aabb

G: A B a b

F1: AaBb

Опыт Менделя

P: \bigcirc AaBb \times \bigcirc AaBb

2	AB	Ab	aB	ab
AB	AABB	AABb	AaBB	AaBb
Ab	AABb	AAbb	AaBb	Aabb
aB	AaBB	AaBb	aaBB	aaBb
ab	AaBb	Aabb	aaBb	aabb 🌎

Желтые гладкие семена – 9

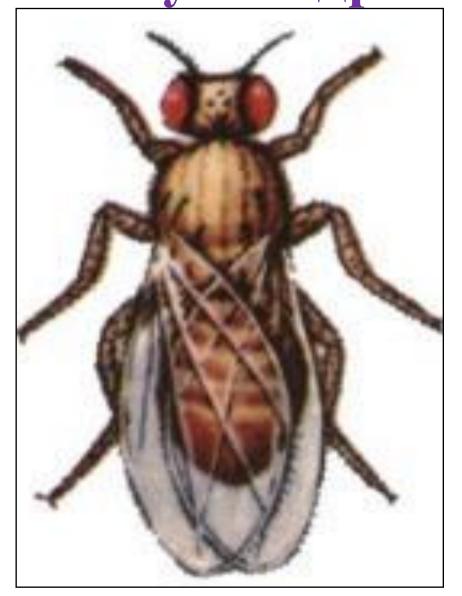
Желтые морщинистые семена – 3

Зеленые гладкие семена – 3

Зеленые морщинистые семена – 1

Соотношение гибридов второго поколения: 9:3:3:1

Третий закон Г. Менделя — закон независимого наследования


При скрещивании гомозиготных организмов, анализируемых по двум (или более) парам альтернативных признаков, во втором поколении наблюдается независимое комбинирование признаков и соответствующих им генов разных аллельных пар.

Томас Морган

Выдающийся американский генетик

Объект исследования Т. Моргана – плодовая мушка дрозофила

Опыты Т. Моргана

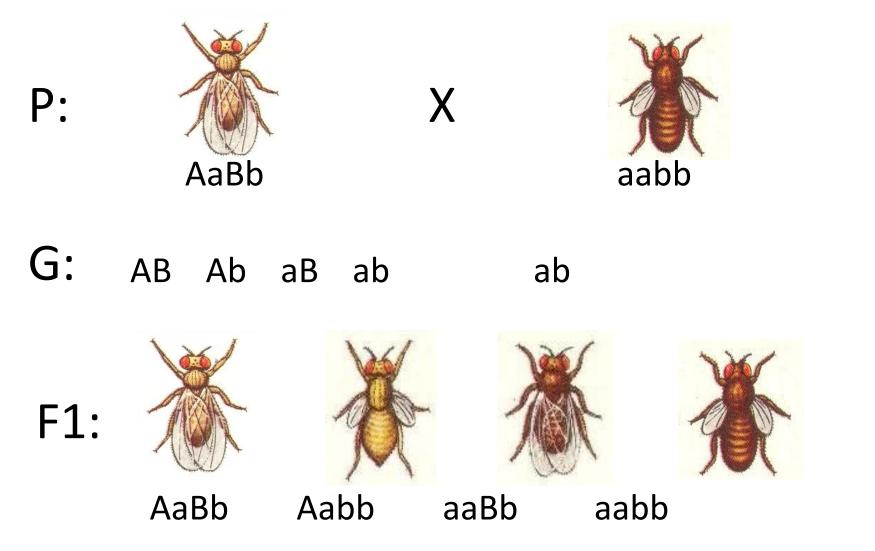
P: 9

Серое тело, нормальные крылья

AABB

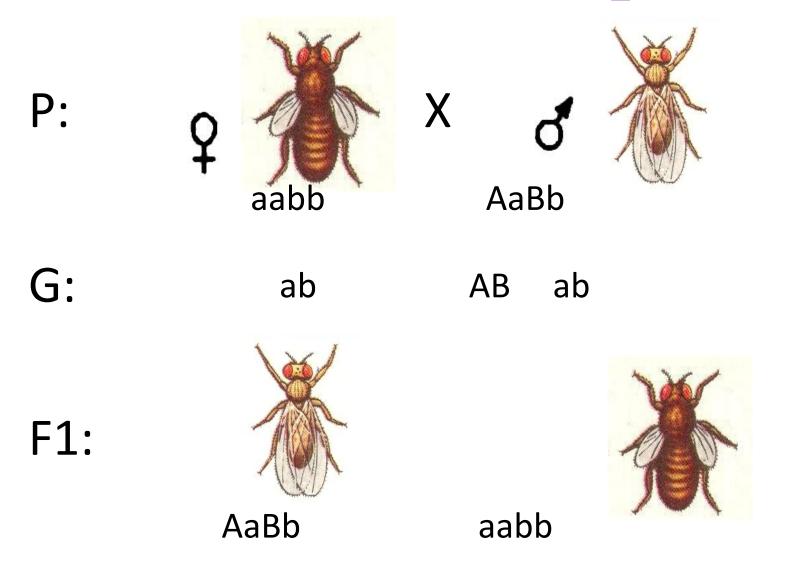
(

Темное тело, рудиментарные крылья aabb


F1:

Серое тело, нормальные крылья

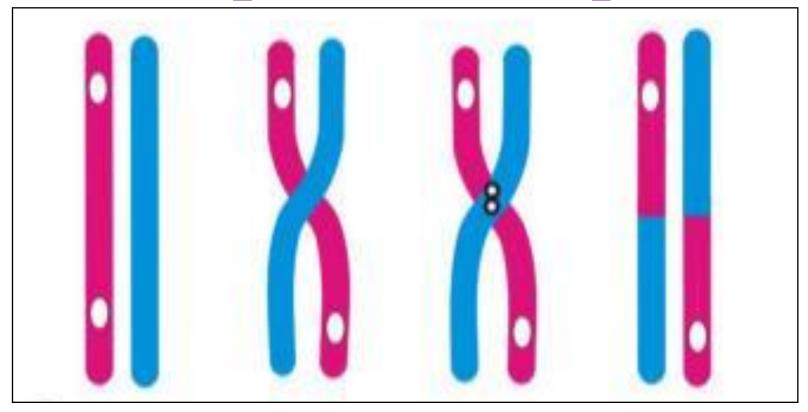
AaBb


Опыты Т. Моргана Анализирующее скрещивание

Анализирующее скрещивание

Скрещивание, при котором гибридная особь скрещивается с гомозиготной особью по рецессивным аллелям, называется анализирующим

Опыты Т. Моргана


Сцепленное наследование

Сцепленное наследование – явление совместной передачи признаков локализованных в одной паре гомологичных хромосом от родителей к потомкам.

Группа сцепления

Комплекс генов, локализованных в одной паре гомологичных хромосом, называется группой сцепления.

Кроссинговер

Кроссинговер — обмен участками между гомологичными хромосомами в момент их временного сближения, т.е. коньюгации.

Основные положения хромосомной теории наследственности

- 1. Гены в хромосомах расположены линейно.
- 2. Гены, находящиеся в одной хромосоме, наследуются сцеплено или совместно (если не происходит кроссинговера).
- 3. В мейозе между гомологичными хромосомами может произойти обмен участками кроссинговер.

Пол

Пол – совокупность морфологических, физиологических, биохимических, поведенческих и других признаков организма, обеспечивающих репродукцию.

Половые хромосомы

Хромосомы, по которым мужской и женский пол отличаются друг от друга, называются половыми.

XX

Xy

Аутосомы

Хромосомы, одинаковые у обоих полов, называются аутосомами.

Гомогаметный пол

Пол, который образует гаметы, одинаковые по половой хромосоме, называется гомогаметным и обозначается как XX.

Гетерогаметный пол

Пол, который образует гаметы, неодинаковые по половой хромосоме, называется гетерогаметным и обозначается как XY

Сцепленное с полом наследование

Наследование признаков, гены которых находятся в Х- или Үхромосоме, называют наследованием, сцепленным с полом, а локализацию генов в половой хромосоме – сцеплением генов с полом.

Наследование, сцепленное с полом. Заболевание гемофилия

P:
$$Q X^H X^h \times \mathcal{O} X^H Y$$

G:
$$X^H$$
 X^h X^H Y

F1:
$$X^H X^H X^H X^H Y X^H X^h X^h Y$$

Задача №1

У томатов красная окраска плодов А доминирует над желтой а, а высокорослость В над карликовостью **b.** Определить генотип и фенотип гибридов первого и второго поколения, полученных при гибридизации дигомозиготных красноплодного высокорослого растения с желтоплодным карликовым.

Задача №2

От брака мужчины дальтоника со здоровой женщиной родилась девочка-дальтоник. Каковы генотипы родителей?

X d - дальтонизм

Х - нормальное зрение