ТКАНИ — УРОВЕНЬ ОРГАНИЗАЦИИ ЖИВОЙ МАТЕРИИ

Филогенетическая система клеток и неклеточных структур (общее строение, а иногда и происхождения, и специализированная на выполнении определенных функций).

Структурные компоненты ткани

- клетки,
- производные клеток,
- межклеточное вещество

этапы зрелости (дифференцировка) клеток

Клеточная популяция — это совокупность клеток данного типа. Например, в рыхлой соединительной ткани содержится: популяция фибробластов; популяция макрофагов; популяция тканевых базофилов и др.

Клеточный дифферон, или гистогенетический ряд, — это совокупность клеток данного типа (данной популяции), находящихся на различных этапах дифференцировки. Исходными клетками дифферона являются стволовые клетки,. Различают полный дифферон или неполный (в зависимости от того, находятся ли в тканях клетки всех типов развития).

однако

Ткани – это не только скопление клеток

 Ткани- это клетки, находящиеся во взаимосвязи и выполняющие функции.

влияние клеток друг на друга —

- непосредственно (через щелевидные контакты (нексусы) и синапсы)
- расстоянии, дистантно, (посредством выделения различных биологически активных веществ).

Производные клеток:

- симпласты (слияние отдельных клеток, например мышечное волокно);
- синцитий (несколько клеток, соединенных между собой отростками, например сперматогенный эпителий извитых канальцев семенника);
- постклеточные образования (эритроциты, тромбоциты).

Межклеточное вещество — продукт деятельности определенных клеток.

Межклеточное вещество состоит из:

- аморфного вещества;
- волокон (коллагеновых, ретикулярных, эластических).

Межклеточное вещество неодинаково выражено в разных тканях.

ткани

- эпителиальные ткани;
- соединительные ткани (ткани внутренней среды, опорно-трофические ткани);
- мышечные ткани;
- нервная ткань

Тканевой гомеостаз

- Внутритканевые регуляторные механизмы способность зрелых клеток выделять биологически активные вещества (кейлоны), угнетающие размножение молодых клеток этой же популяции. И наоборот.
- **Межтканевые регуляторные механизмы** обеспечиваются участием лимфоидной ткани (иммунной системы) в поддержании структурного гомеостаза.
- Организменные регуляторные факторы обеспечиваются влиянием эндокринной и нервной систем.

При некоторых внешних воздействиях может нарушиться естественная детерминация молодых клеток, что может привести к превращению одного тканевого типа в другой. Такое явление носит название метаплазии и происходит только в пределах данной тканевой группы.

Регенерация тканей

Формы регенерации: физиологическая регенерация восстановление клеток ткани после их естественной гибели (например, кроветворение); репаративная регенерация восстановление тканей и органов после их повреждения (травм, воспалений, хирургических воздействий и т. д.).

Факторы, регулирующие регенерацию:

- гормоны;
- медиаторы;
- кейлоны;
- факторы роста и др.

Эпителиальные ткани

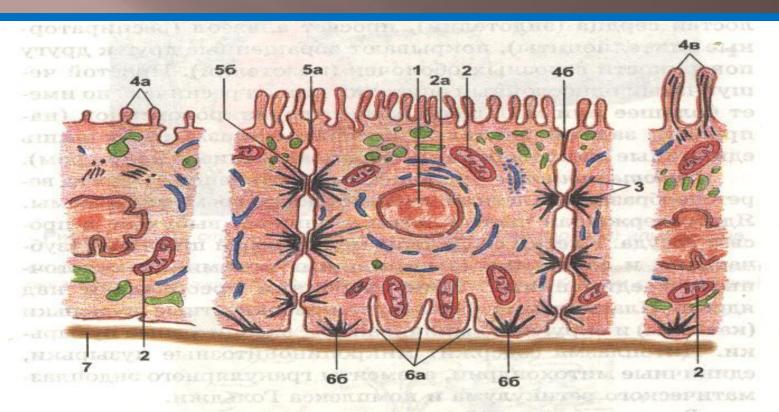
Функции эпителиев:

защитная (барьерная); секреторная; экскреторная; всасывательная.

Структурно-функциональные особенности эпителиальных тканей:

- расположение клеток пластами;
- расположение клеток на базальной мембране;
- преобладание клеток над межклеточным веществом;
- полярная дифференцированность клеток (на базальный и апикальный полюсы);
- отсутствие кровеносных и лимфатических сосудов;
- высокая способность клеток к регенерации.

Структурные компоненты эпителиальной ткани:

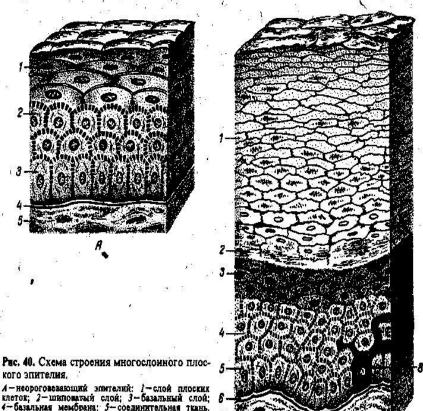

эпителиоциты (гландулоциты) - основные структурные элементы эпителиальных тканей базальная мембрана (толщина около 1 мкм) состоит из:

тонких коллагеновых фибрилл (из белка коллагена 4-го типа);
 аморфного вещества (матрикса), состоящего из углеводно-белково-липидного комплекса.

Функции базальной мембраны:

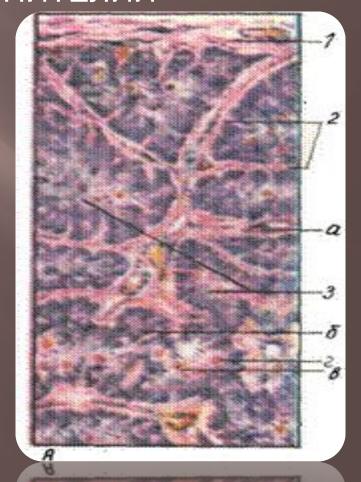
- барьерная (отделение эпителия от соединительной ткани);
- трофическая (диффузия питательных веществ и продуктов метаболизма из подлежащей соединительной ткани и обратно);
- организующая (прикрепление эпителиоцитов с помощью полудесмосом).

Строение эпителиальной клетки

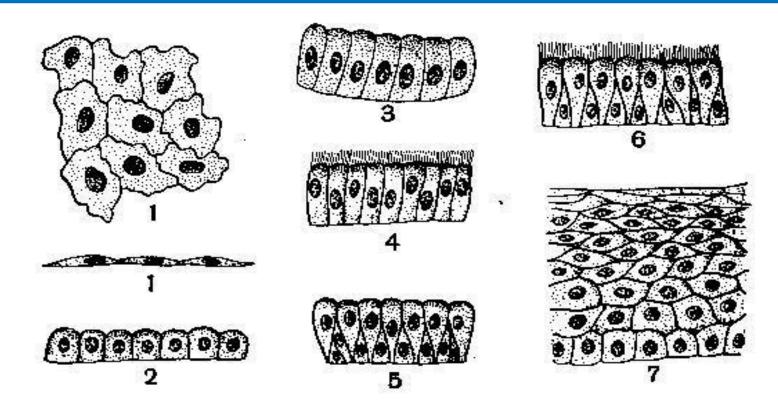

Строение эпителиальной клетки (схема):

1 — ядро; 2 — митохондрии; 2а — комплекс Гольджи; 3 — тонофибриллы; 4 — структуры апикальной поверхности клеток: 4а — микроворсинки, 4б — щеточная каемка, 4в — реснички; 5 — структуры межклеточной поверхности: 5а — плотные контакты, 5б — десмосомы; 6 — структуры базальной поверхности клеток: 6а — инвагинация цитолеммы, 6б — полудесмосомы; 7 — базальная мембрана

, новносоводини монтажены втидион отосниваеси ввикод

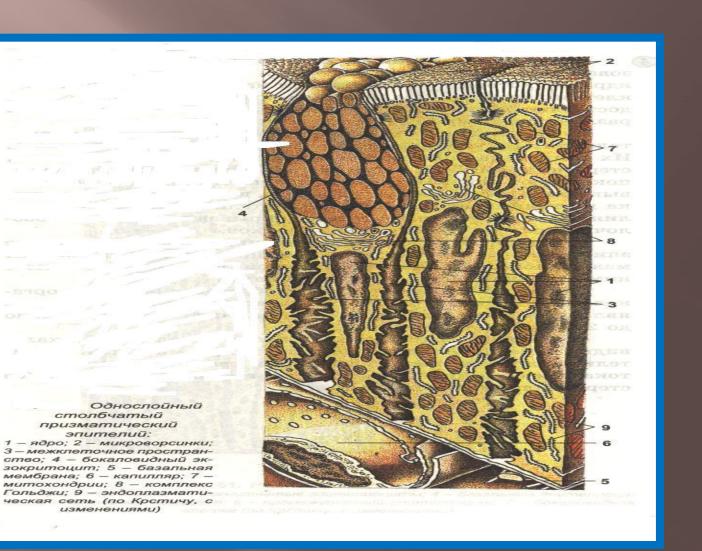

Классификация эпителиальных тканей

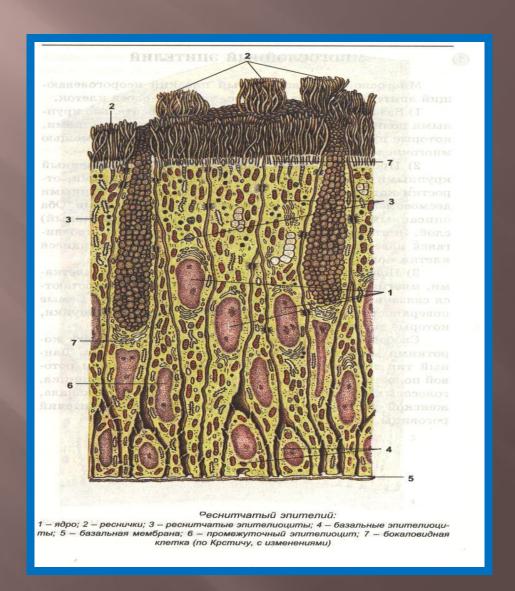
ПОКРОВНЫЙ ЭПИТЕЛИЙ



 4 — неороговевающий эпителий: 1 — слой плоских клетов; 2 — шиноветый слой; 3 — базальный слой; 4 — базальная мембрана; 5 — соединительная ткань, 5 — ороговевающий эпителей: 1 — роговой слой; 2 — эпестайший слой; 3 — зернистый слой; 4 — шиноветый слой; 5 — базальный слой; 6 — базальная мембрана; 7-соединительная ткань; 8-пигментодит,

ЖЕЛЕЗИСТЫЙ ЭПИТЕЛИЙ


Типы эпителия


Разные типы эпителия;

I — однослойный плоский (вид сверху и сбоку); 2 — низкий призматический; 3 — высокий призматический; 4 — реснитчатый; 5 — многорядный реснитчатый; 7 — многослойный плоский.

КИШЕЧНЫЙ ЭПИТЕЛИЙ

РЕСНИЧНЫЙ ЭПИТЕЛИЙ

Соединительные ткани

Структурно-функциональные особенности:

- внутреннее расположение в организме;
- преобладание межклеточного вещества над клетками;
- многообразие клеточных форм;
- общий источник происхождения мезенхима.

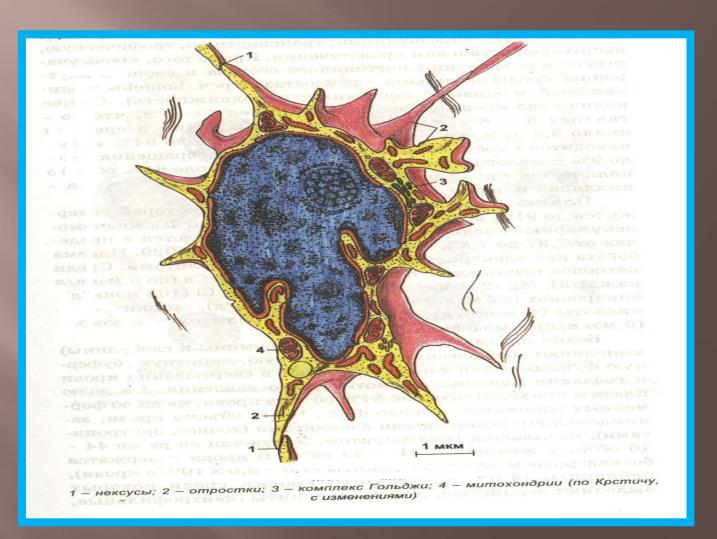
Функции соединительных тканей:

- трофическая (метаболическая);
- опорная;
- защитная (механическая, неспецифическая и специфическая);
- репаративная (пластическая) и др.

ОБЩИМ СВОЙСТВОМ ВСЕХ ВИДОВ СОЕДИНИТЕЛЬНОЙ ТКАНИ

-Выраженная способность к регенерации - Большая пластичность

СОЕДИНИТЕЛЬНЫЕ ТКАНИ


- Собственно соединительные ткани
- Соединительные ткани со специальными свойствами
- Скелетные соединительные ткани

- Кровь и лимфа
- Собственно соединительная ткань
- Хрящевая и костная ткани

К.П. Рябов, 1990

В.Г. Елисеева, 1983

мезенхима

Собственно соединительная ткань

Волокнистая ткань

Ткань с особыми свойствами

Рыхлая неоформленная

Ретикулярная Студенистая Жировая

Плотная (оформленная. неоформленная)

рыхлая волокнистая неоформленная соединительная **ТИПИТЕТОЧНЫЕ ТИПЫ**

МОРФОЛОГИЧЕСКИЕ ОСОБЕННОСТИ:

- 1) многообразие клеточных форм;
- 2) преобладание в межклеточном веществе аморфного вещества над волокнами.


Функции рыхлой волокнистой соединительной ткани:

- трофическая;
- опорная образует строму паренхиматозных органов;
- защитная неспецифическая и специфическая (участие в иммунных реакциях) защита;
- депо воды, липидов, витаминов, гормонов;
- репаративная (пластическая).

(КЛЕТОЧНЫЕ ПОПУЛЯЦИИ:

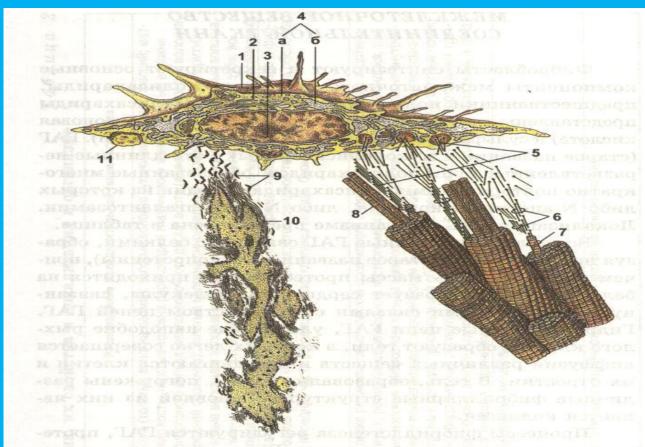
- фибробласты;
- макрофаги (гистиоциты);
- тканевые базофилы (тучные клетки);
- плазмоциты;
- жировые клетки (липоциты);
- пигментные клетки;
- адвентициальные плетки;
- перициты;
- клетки крови лейкоциты (лимфоциты, нейтрофилы).

Рыхлая волокнистая

Строение рыхлой волокнистой соединительной ткани:

1 — макрофагоцит; 2 — аморфное межклеточное (основное) вещество; 3 — плазмоцит (плазматическая клетка); 4 — пипоцит (жировая клетка); 5 — кровеносный сосуд; 6 — миоцит; 7 — перицит; 8 — эндотелиоцит; 9 — фибробласт; 10 — эластическое волокно; 11 — тканевый базофил; 12 — коллагеновое волокно

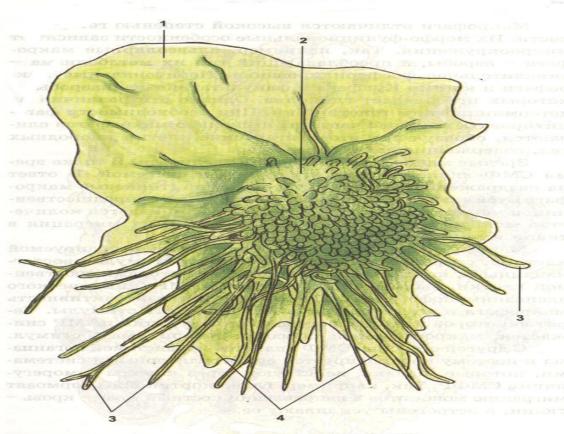
Структурная и функциональная характеристика клеточных типов


ФИБРОБЛАСТЫ

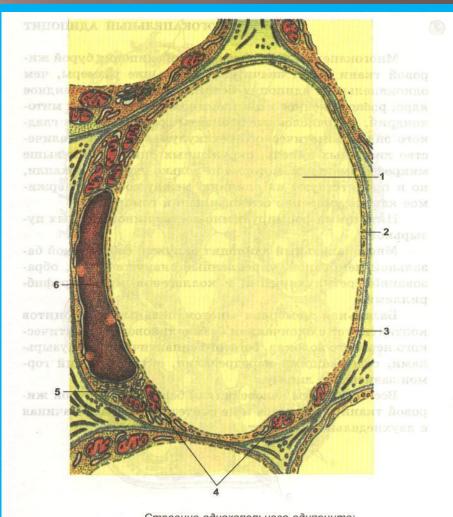
- Они неоднородны по степени зрелости и функциональной специфичности и потому подразделяются на следующие субпопуляции:
- малодифференцированные клетки;
- дифференцированные или зрелые клетки, или собственно фибробласты;
- старые фибробласты (дефинитивные)
 фиброциты, а также
 специализированные формы
 фибробластов;
- миофибробласты;
- фиброкласты.
- Преобладающей формой являются зрелые фибробласты, функция которых заключается в синтезе и выделении в межклеточную среду белков коллагена и эластина, а также гликозаминогликанов.
- Следовательно, межклеточное вещество является продуктом деятельности фибробластов.

МАКРОФАГИ

- клетки, осуществляющие защитную функцию, прежде всего посредством фагоцитоза крупных частиц.
- Образуются макрофаги из моноцитов после их выхода из кровеносного русла.
- Макрофаги характеризуются структурной и функциональной гетерогенностью в зависимости от степени зрелости, области локализации, а также от их активации антигенами или лимфоцитами.
- Защитная функция макрофагов проявляется в разных формах:
- неспецифическая защита (посредством фагоцитоза экзогенных и эндогенных частиц и их внутриклеточного переваривания);
- выделение во внеклеточную среду лизосомальных ферментов и других веществ;
- специфическая, или иммунологическая защита (участие в разнообразных иммунных реакциях).
- Макрофаги также синтезируют и выделяют в межклеточную среду около 100 различных биологически активных веществ. Поэтому макрофаги можно отнести к секреторным клеткам.


фибробласт

Строение фибробласта и синтез межклеточного вещества:


1 — фибробласт; 2 — сетчатый аппарат; 3 — ядро; 4 — эндоплазматическая сеть:
 а — незернистая, 6 — зернистая; 5 — молекулы тропоколлагена, выделяющиеся из клетки; 6 — полимеризация молекул тропоколлагена в протофибриллы; 7 — микрофибриллы; 8 — фибриллы; 9 — молекулы эластина; 10 — микрофибриллярный структурный гликопротеин; 11 — эластичное волокно, погруженное в мембрану фибробласта

гистиоцит

Макрофаг (внешний вид): 1 — ламеллоподия; 2 — перикарион; 3 — филоподии (тонкие цитоплазматические отростки); 4 — псевдоподии (по Крстичу, с изменениями)

адипоцит

Строение однокапельного адипоцита: 1 – капля жира; 2 – цитоплазма адипоцита; 3 – базальная мембрана; 4 – митохондрия; 5 – сетчатый аппарат; 6 – ядро (по Крстичу, с изменениями)

Межклеточное вещество

ОСНОВНОЕ, ИЛИ АМОРФНОЕ, ВЕЩЕСТВО

волокна

состоит из белков (коллаген, альбумин и глобулины) и углеводов (гликозаминогликаны).

Аморфное вещество обеспечивает транспорт веществ из крови клеткам и обратно.

- коллагеновые волокна.
- эластические волокна характеризуются высокой эластичностью, способностью растягиваться и сокращаться, но незначительной плотностью.
- ретикулярные волокно (более выражен углеводный компонент)

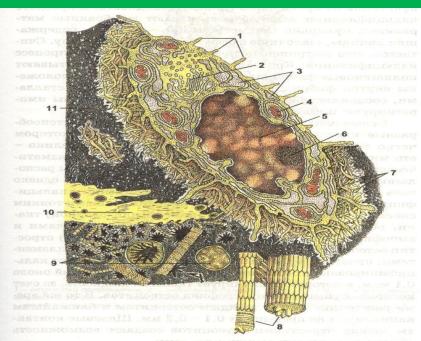
Скелетные соединительные ткани

ХРЯЩЕВЫЕ

Хондробласты располагаются одиночно по периферии хрящевой ткани (вытянутые уплощенные клетки с базофильной цитоплазмой, содержащей хорошо развитую зернистую ЭПС и пластинчатый комплекс.). обладают способностью митотического деления.

Хондроциты

Аморфное вещество содержит значительное количество минеральных веществ, не образующих кристаллы, воду, плотную волокнистую ткань.


Сосуды в хрящевой ткани в норме отсутствуют.

- В зависимости от строения межклеточного вещества хрящевые ткани подразделяются на гиалиновую, эластическую и волокнистую хрящевую ткань.
- Трофика гиалиновой хрящевой ткани суставных поверхностей обеспечивается синовиальной жидкостью суставов, а также жидкостью из сосудов костной ткани

КОСТНЫЕ

- Остеоциты отростчатой формы с крупным ядром и слабо выраженной цитоплазмой (клетки ядерного типа). Тела клеток локализуются в костных полостях (лакунах), а отростки в костных канальцах. Многочисленные костные канальцы, анастомозируя между собой, пронизывают костную ткань, сообщаясь периваскулярным пространством, образуют дренажную систему костной ткани. В этой дренажной системе содержится тканевая жидкость, посредством которой обеспечивается обмен веществ не только между клетками и тканевой жидкостью, но и в межклеточном веществе.
- Остеоциты являются дефинитивными формами клеток и не делятся.
- Остеобласты содержатся только в развивающейся костной ткани, где охватывают по периферии каждую костную пластинку, плотно прилегая друг к другу.
- Остеокласты костеразрушающие клетки, в сформированной костной ткани отсутствуют, но содержатся в надкостнице и в местах разрушения и перестройки костной ткани.
- Межклеточное вещество состоит из основного аморфного вещества и волокон, в которых содержатся соли кальция. Волокна состоят из коллагена и складываются в пучки, которые могут располагаться параллельно (упорядоченно) или неупорядоченно, Основное вещество костной ткани, как и других разновидностей соединительных тканей, состоит из гликозамино- и протеогликанов.

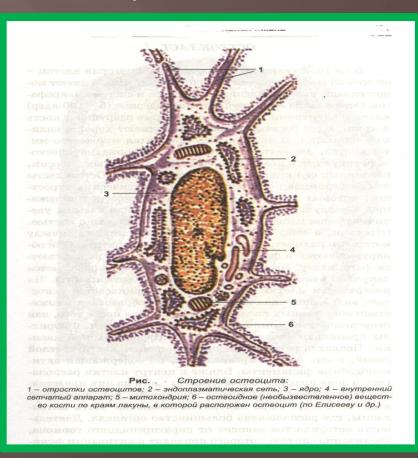

ОСТЕОБЛАСТ

Рис. Остеобласт:

1 — микроворсинки; 2 — комплекс Гольджи; 3 — цистерны гранулярной эндоплазматической сети; 4 — митохондрии; 5 — ядро; 6 — ядрышко; 7 — остеоид; 8 — оссеиновые волокна, пропитанные кристаллами кальция (оссифицированные); 9 — матриксные гранулы; 10 — остеоцит; 11 — матрикс кости (по Крстичу, с изменениями)

ОСТЕОЦИТ

Виды костной ткани

ГРУБОВОЛОКНИС ТАЯ

фибрилли отдельные или их пучки, имеющие неодинаковую толщину, остеоциты располагаются промежуточном без веществе всякого порядка между ними беспорядочно разбросаны остеоциты.

ПЛАСТИНЧАТАЯ

пучки коллагеновых фибриллей. имеют одинаковую толщину и идут в определенном направлении между пучками волокон располагаются остеоциты, сильно уплощенные и вытянутые.

фибрилли в двух смежных пластинках имеют различное направление и располагаются под тем или иным углом друг к другу.

остеокласт

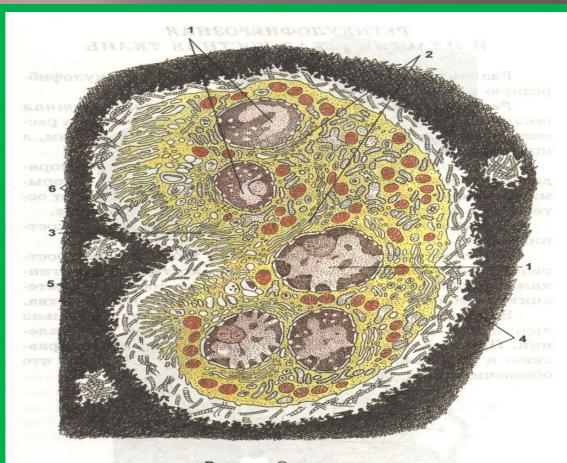


Рис. Остеокласт: 1 — ядра; 2 — комплекс Гольджи; 3 — гофрированные каемки; 4 — костный матрикс; 5 — кристаллы гидроксиаппатита; 6 — коллагеновые фибриллы (по Крстичу, с изменениями)

Значение хрящевой ткани

- Механическая функция:
- Прочная
- Эластичная
- Суставные поверхности:
- грудинные концы ребер,
- скелет трахеи,
- гортани,
- бронхов,
- ушной раковины

Гиалиновый хрящ

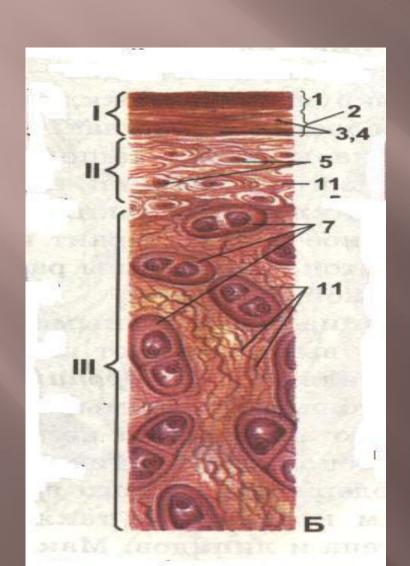
- I. Надхрящница
- 1. Волокнистый слой
- 2. Хондрогенный слой
- 3. Хондрогенные клетки
- 4. Хондробласты
- II. Зона молодого хряща
- 5. Хондроциты
- 6. Хрящевой матрикс
- 7. Изогенная группа хондроцитов
- 8. Хрящевая лакуна
- 9. Базофильный хрящевой матрикс
- III. Зона зрелого хряща

Гиалиновый хрящ

КЛЕТКИ

Образуют группы от 3-5 клеток – изогенные клетки.

Форма: круглые


- овальные,
- угловатые,
- Дисковидные

Окружена капсулой фибрилли

ПРОМЕЖУТОЧНОЕ ВЕВЬЛОКНА коллагеновые фибрилли (прозрачные) – 18%

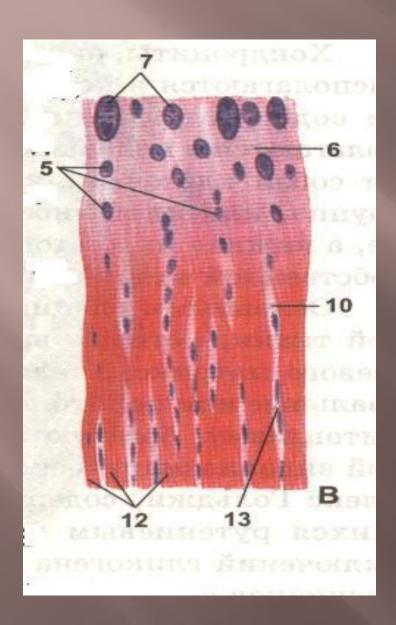
Аморфное вещество: протеины и углеводы (хондромукоид)

Эластический хрящ

- I. Надхрящница
- 1. Волокнистый слой
- 2. Хондрогенный слой
- 3. Хондрогенные клетки
- 4. Хондробласты
- II. Зона молодого хряща
- 5. Хондроциты
- 11. Эластичные волокна
- III. Зона зрелого хряща
- 7. Изогенная группа хондроцитов

Эластический хрящ

КЛЕТКИ


Окружены капсулой

ПРОМЕЖУТОЧНОЕ ВЕЩЕСТВО

Коллагеновые фибрилли

■ Толстые эластические волокна (желтые)

Волокнистый хрящ

- 5. Хондроциты
- 6. Хрящевой матрикс
- 7. Изогенная группа хондроцитов
- 10. Основное вещество
- 12. Пучки коллагеновых волокон
- 13. Фиброциты

Волокнистый хрящ

КЛЕТКИ

ПРОМЕЖУТОЧНОЕ ВЕЩЕСТВО

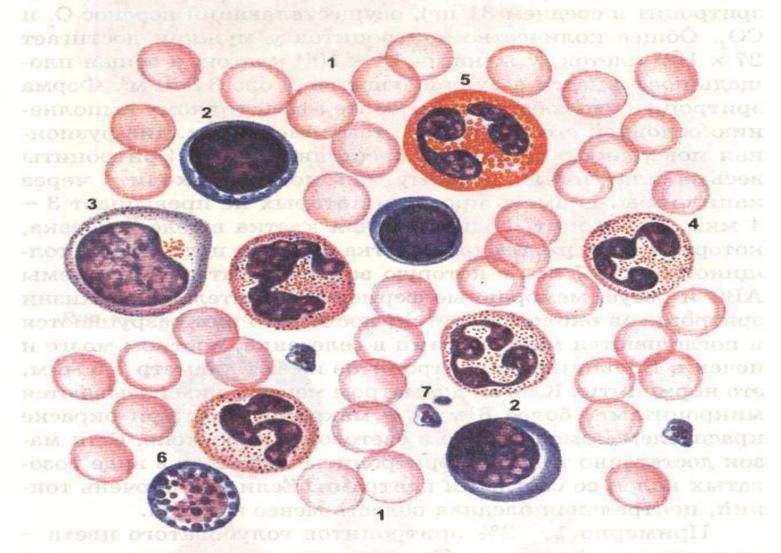
Форма такая же

Коллагеновые волокна собраны в пучки

КРОВЬ И ЛИМФА

Кровь и лимфа — это ткани внутренней среды организма, они является разновидностью соединительной ткани.

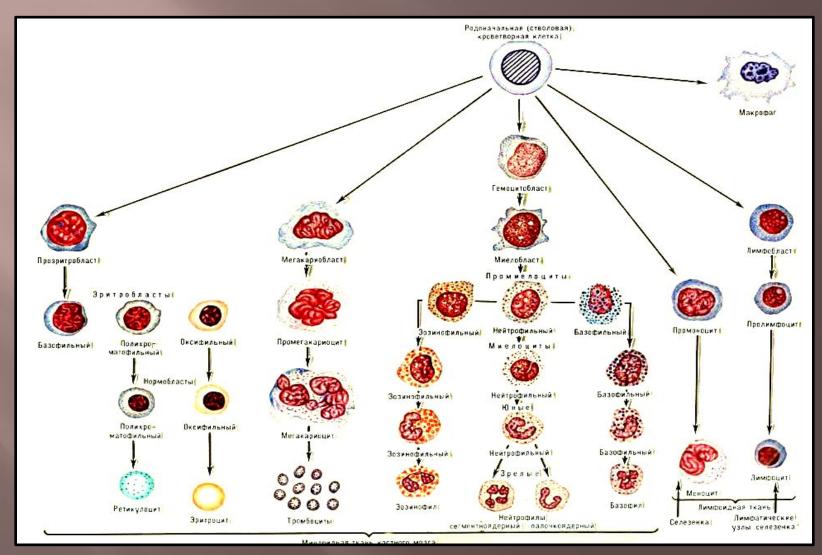
Особенности:


- мезенхимальное происхождение,
- большой удельный вес межуточного вещества,
- большое разнообразие структурных компонентов.

Функции крови делятся на:

- **транспортная**;
- трофическая;
- **дыхательная**;
- **в защитная**;
- экскреторная;
- регуляция гомеостаза.

Составные компоненты крови:


- клетки форменные элементы;
- жидкое межклеточное вещество плазма крови.

Мазок периферической крови взрослого человека (общий вид):

1— эритроциты; 2— лимфоциты; 3— моноцит; 4— нейтрофильные гранулоциты; 5— эозинофильные гранулоциты; 6— базофильные гранулоциты; 7— тромбоциты

Кровь – тип соединительной ткани

МЫШЕЧНАЯ ТКАНЬ

функции:

-двигательные процессы внутри организма, -перемещение организма или его частей в пространстве,

-выполнение механической работы, - некоторые опорные функции

свойство:

сократимость

способности:

-сокращение и расслабление -генерация силы

классификации

Морфологическая классификация

- Поперечно-полосатая (поперечноисчерченная)
- Гладкая (неисчерченная)

Классификация по локализации

- Скелетная
- Гладкая
- Сердечная

Мышечные ткани (по хлопонину)

Гладкие			Поперечно-			
			полосатые			
Мионейрального	<u>Миоэпителиально</u>	Висцерального	Целомическог	Соматического		
типа	<u>го типа</u>	типа	о типа	типа		
Мышца	Сократимые	Мускулатура	Мускулатура	Мускулатура		
суживающая и	элементы желез	внутренних	миокарда	тела, начального		
мышца	эпителия	органов:	сердца	отдела		
расширяющая	эпидермального	большей части		пищеварительног		
зрачок	типа (потовые,	пищеварительно		о тракта,		
	млечные,	го тракта;		глазодвигательн		
	слюнные)	кровеносных		ые мышцы		
		сосудов,		No.		
		урогенитального				
		тракта,				
		воздухоносных				
		путей, ресничная	JII I			
		(цилиарная)				
	NO PER LA	мышца глаза	1	***		

Структурная организация

Гладкая мышечная ткань:

Гладкий миоцит — одноядерная клетка вытянутой веретеновидной формы

Поперечно-полосатая мышечная ткань: Мышечные волокна, основу которых составляют

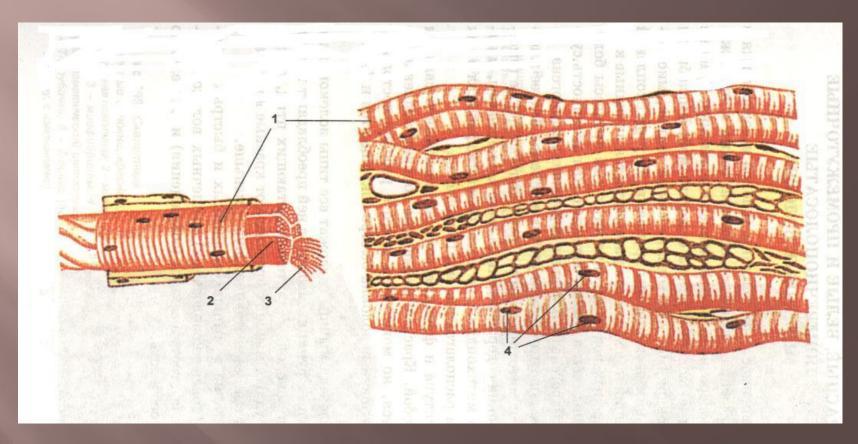
МИОСИМПЛАСТЫ – многоядерные структуры, которые образуются при слиянии одноядерных клеток миобластов. Кроме миосимпластов в состав мышечных волокон входят и клетки – **МИОСАТЕЛЛИТОЦИТЫ**, они образуют камбиальный резерв мышечной скелетной ткани.

Поперечно-полосатая сердечная мышечная

ТКань: Кардиомиоцит — сердечная мышечная клетка, одноядерная или двуядерная. Кардиомиоциты соединяются торцевыми участками в функциональные сердечные мышечные волокна, однако эти волокна имеют клеточную структуру. Функциональные волокна анастомозируют боковыми поверхностями

классификация по типу контроля мышечной активности

Поперечно-полосатая мышечная ткань скелетного типа — соматическая нервная система, возможна сознательная регуляция.


Гладкая мышечная ткань внутренних органов — вегетативная (автомномная) нервная система, в большинстве случаев не контролируется сознательно.

Поперечно-полосатая мышечная ткань сердечного типа — вегетативная иннервация до 4 нд внутриутробного развития. Затем регуляция собственной проводящей системой сердца. Вегетативная нервная система контролирует деятельность водителей ритма.

Поперечнополосатая мышечная ткань

- В мимических мышцах лица человека и в мышцах низших позвоночных встречаются волокна, заканчивающиеся разветвлениями.
- В мышце волокна располагаются продольно, длина их различна и достигает 12,5 см.
- В коротких мышцах она совпадает с их длиной, в длинных же волокна обычно заканчиваются, не доходя до их конца. Толщина волокон колеблется от 10 до 100 мкм.

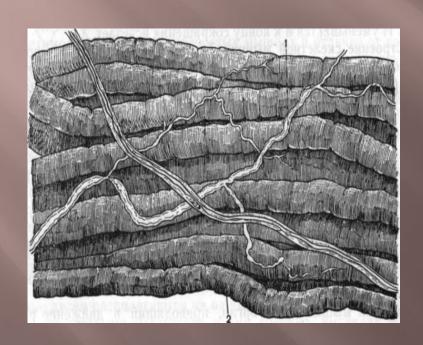
Поперечнополосатая мышечная ткань

1 – мышечное волокно, 2- сарколемма, 3 – миофибриллы, 4 - ядра

Мышечные ткани

СЕРДЕЧНАЯ МЫШЕЧНАЯ ТКАНЬ

ГЛАДКАЯ МЫШЕЧНАЯ ТКАНЬ МЕЗЕНХИМАЛЬНОГО ПРОИСХОЖДЕНИЯ


кардиомиоцит:

■типичные, или сократительные (прямоугольную клетку длиной 50—120 мкм, шириной 15—20 в центре которой MKM, локализуется обычно одно ядро - функциональный синцитий (синусо-**■атипичные** предсердный узел; предсердножелудочковый узел; предсердно-желудочковый пучок (пучок Гисса) — ствол, правую и левую ножки; концевые разветвления ножек Пуркинье). (волокна обеспечивают генерирование биопотенциалов, их проведение передачу на сократительные кардиомиоциты.

миоцит: клетка веретенообразной формы длиной 30—100 мкм (в беременной матке до 500 мкм), диаметром 8 мкм, покрытая базальной пластинкой. Миозиновые и актиновые филаменты составляют сократительный аппарат миоцита

Мышечная ткань

1. НЕРВНОЕ ВОЛОКНО 2. МЫШЕЧНОЕ ВОЛОКНО 1. МИТОХОНДРИИ, 2. МИОФИБРИЛЛИ, 3. ЯДРО, 4. ЯДРЫШКО, 5. ОБОЛОЧКА КЛЕТКИ

Нервная ткань

Состоит из двух основных типов клеток: нейроцитов и нейроглии; Межклеточное вещество отсутствует; Нервная ткань не подразделяется на морфологические подгруппы; Основной источник происхождения: нейроэктодерма.

Структурные компоненты нервной ткани:

- нервные клетки (нейроциты или нейроны);
- глиальные клетки глиоциты.

Функции нервной ткани:

- восприятие различных раздражений и трансформация их в нервные импульсы - нейроциты;
- проведение нервных импульсов, их обработка и передача на рабочие органы нейроциты;
- клетки нейроглии способствуют выполнению перечисленных функций.

Эволюция нервной системы

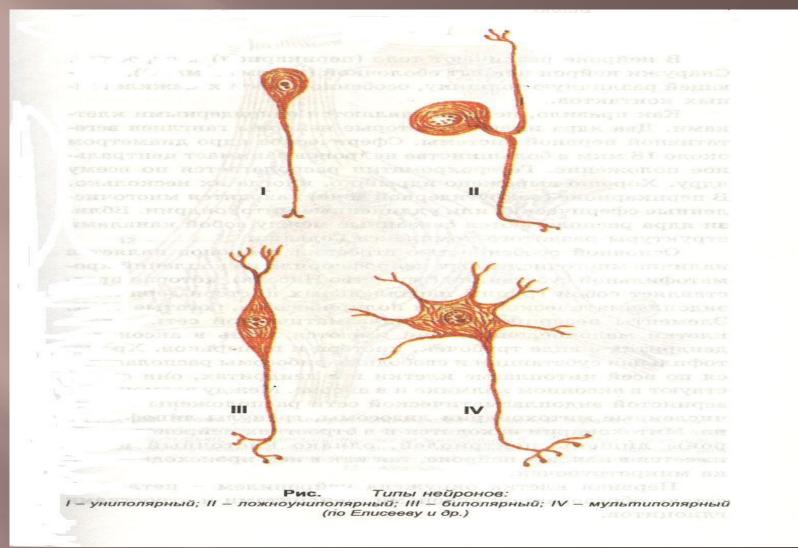
- Первичные чувствительные клетки
- диффузная нервная система
- нервные центры
- нервные узлы (ганглиях)
- цепочечная нервная система
- нервная трубка

Строение нейроцитов

- В центре нейроцита шаровидное ядро с однимдвумя ядрышками и малым или большим содержанием хроматина (исключение: ядра Кларка спинного мозга)
- гиалоплазма
- общие и специфические назначения органеллы (тигроид, нейрофибриллы)
- цитоплазматические включения (гликоген, пигмент, ферменты)

Классификация нейроцитов

Нервные клетки классифицируются:


- по морфологии;
- по функции.

По морфологии по количеству отростков подразделяются:

- униполярные (псевдоуниполярные) с одним отростком;
- биполярные (с двумя отростками);
- мультиполярные (более двух отростков).

По функции подразделяются на:

- афферентные (чувствительные);
- эфферентные (двигательные, секреторные);
- ассоциативные (вставочные);
- секреторные (нейроэндокринные).

Морфологическая характеристика нейрона

- униполярные, состоят из тела и *нейрита* (аксона) . Несут рецептивную (чувствительную) функцию.
- биполярные имеют тело и два отростка нейрит и дендрит. Чувствительные нейроны беспозвоночных часто располагаются в эпидермисе, а у позвоночных они лежат в ганглиях.
- мультиполярные нейроны несут двигательную (моторную, эффекторную) и ассоциативную функции. В ганглиях вегетативного отдела нервной системы встречаются мультиполярные чувствительные и двигательные нейроны.

Нейроны

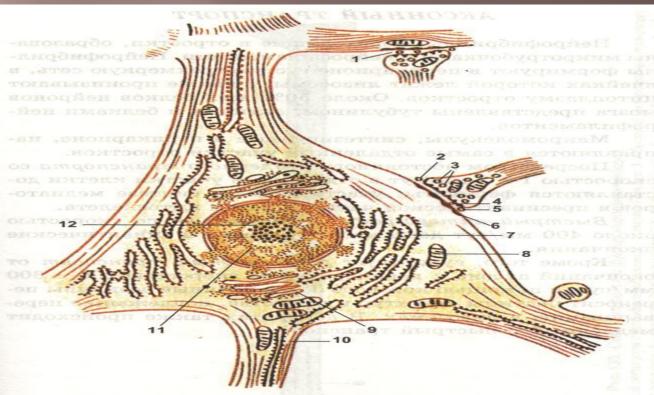
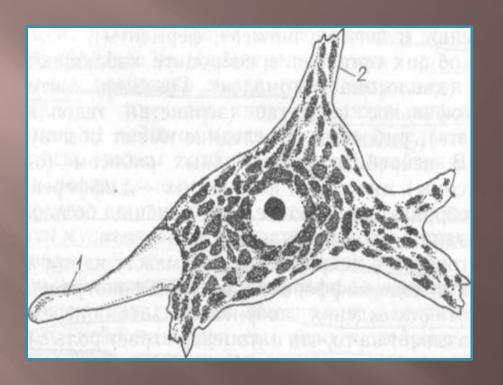



Рис. Схема ультрамикроскопического строения нервной клетки: 1 — аксонодендритический синапс; 2 — аксоносоматический синапс; 3 — пресинаптические пузырьки; 4 — пресинаптическая мембрана; 5 — синаптическая щель; 6 — постсинаптическая мембрана; 7 — эндоплазматическая сеть; 8 — митохондрия; 9 — внутренний сетчатый аппарат (комплекс Гольджи); 10 — нейрофибриллы; 11 — ядро; 12 — ядрышко

Более точно

Хроматофильное вещество в корешковом нейроне спинного мозга

1. нейрит, 2. дендрит

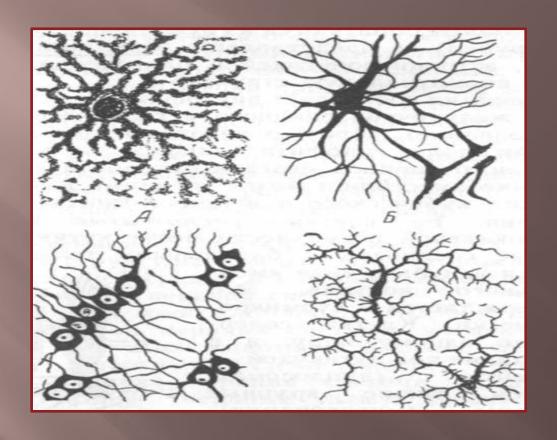
Структурная и функциональная характеристика глиальных клеток

Клетки нейроглии являются вспомогательными клетками и нервной ткани и выполняют следующие функции:

- опорную;
- трофическую;
- разграничительную;
- секреторную;
- защитную и др.

Глиальные клетки по своей морфологии также являются отростчатыми клетками, не одинаковыми по величине, форме и количеству отростков.

На основании размеров они подразделяются, прежде всего, на макроглию и микроглию.


нейроглия

МАКРОГЛИЯ -

МИКРОГЛИЯ

- эпендимной глией (эпендима призматические клетки), выстилают полости центральной нервной системы (центральный канал спинного мозга, желудочки и водопровод головного мозга).
- астроцитной глией выполняют опорную и трофическую функции для нейроцитов серого вещества
- олигодендроглия малоотростчатые клетки, самая распространенная популяция глиоцитов. Локализуются они преимущественно в периферической нервной системе

- ГИСТИОЦИТОВ
- мезенхимы (эмбриональных клеток) мягких оболочек мозга

Различные виды нейроглии:

А — протоплазматические астроциты; Б—волокнистые астроциты; В — олигодендроглия; Г— микроглня (глиальные макрофаги))

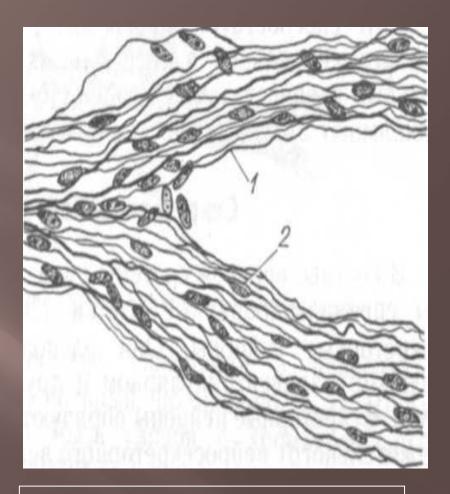
Нервные волокна

- Не самостоятельный структурный элемента нервной ткани, а комплексные образования, включающие следующие элементы:
- отростки нервных клеток (осевые цилиндры);
- глиальные клетки (леммоциты, или шванновские клетки);
- соединительно-тканную пластинку (вязальную пластинку).
- Функция нервных волокон является проведение нервных импульсов. При этом отростки нервных клеток (осевые цилиндры) проводят нервные импульсы, а глиальные клетки (леммоциты) способствуют этому проведению.

Миелиновые нервные волокна из седалищного лягушки, нерва обработанные тетраоксидом осмия:

слой миелина;

2 соединительная ткань;


 β нейролеммоцит;

4насечки миелина;

5перехват узла

Нервные волокна

2 ядра нейролеммоцитов

Межмышечное нервное сплетение кишечника кошки:

1безмиелиновые нервные волокна;

Нервная ткань

БЕЗМИЕЛИНОВОЕ <u>НЕРВНОЕ</u> ВОЛОКНО

Цепь леммоцитов, в которую вдавлено несколько (5—20) осевых цилиндров. Каждый осевой цилиндр прогибает цитолемму леммоцита и как бы погружается в его цитоплазму.

Они тонкие (5—7 мкм) и проводят нервные импульсы очень медленно (1—2 м/с).

МИЕЛИНОВОЕ НЕРВНОЕ ВОЛОКНО

Высокая скорость проведения нервных импульсов по миелиновым нервным волокнам объясняется сальтаторным способом проведения нервных импульсов: скачками от одного перехвата к другому.

Скорость проведения нервных импульсов нервными волокнами

зависит от толщины:

класс A (толстые миелиновые волокна с поперечником 8—16 мкм) обладают самой быстрой проводимостью (50— 140 м/с и более).

класс В (среднего калибра) — 15—35 м/с.

класс C (1—4 мкм в поперечнике) самые тонкие (миелиновые и безмиелиновые) и имеют минимальную скорость проведения (1 — 2 м/с).

от возраста животного:

- у 3—9-дневных котят названный показатель варьирует в пределах 9— 14 м/с,
- у взрослых животных он достигает 70—90 м/с и даже 100—117 м/с.

Заполните таблицу

ткань	подтип	Особенности клеток	Особ -ти межклеточного в- ва	Что выстилает

Большому кораблю... 7 футов под килем...

