ATP – Structure & Function pp 17, 31, 86, 113,270-272, 349 Anaerobic and Aerobic Respiration Mitochondria Structure and Function

Mrs Cooper ATP – On Your Own

https://www.youtube.com/watch?v=LL3OgI1wYrU

Mito pp 16-17, 276 Res pp 272-275, 277-278

G11 Biology 2017-2018

Learning Objective

- 1. Know the structure and function of ATP.
- 2. Compare the formation of ATP in aerobic and anaerobic respiration.
- 3. To establish the relationship of mitochondrial structure and processes of cellular respiration.

Success Criteria – To Be Determined

Terminology

Prof Dave ATP – 4 min In class

https://www.youtube.com/watch?v=-6VyMFQ7rRo

English	Google Russian 😌
Adenosine Triphosphate (ATP)	Аденозинтрифосфат (АТФ)
Inorganic phosphate Pi	Неорганический фосфат Рі
currency	валюта
hydrolysis / condensation	гидролиз / конденсация
Metabolic	метаболический
catabolic, breakdown	катаболизм, пробой
anabolic, build	анаболический, строить
Anaerobic / aerobic	Анаэробные / аэробные
respiratory pathways	дыхательные пути
substrate level phosphorylation	фосфорилирование уровня
oxidative phosphorylation	субстрата
	окислительного фосфорилирования

Adenosine Triphosphate - ATP

Structure of adenosine triphosphate (ATP)

The ATP molecule (Figure 1) is a phosphorylated nucleotide and it has three parts:

- Adenine a nitrogen-containing organic base belonging to the group called purines.
- Ribose a sugar molecule with a 5-carbon ring structure (pentose sugar) that acts as the backbone to which the other parts are attached.
- Phosphates a chain of three phosphate groups.

Adenosine TriphosPhate

Universal Energy Currency – all living things use ATP as an energy source

Reasons for ATP's Universal Success

- 1. ATP is water soluble
- 2. ATP diffuses though a cell easily.
- 3. It easily hydrolyzed to release energy
- 4. It recycles/cycles ATP □□ ADP + Pi

Phosphate bonds are are easily broken

- -Easily release their energy
- -ATP is Recycled 😂
- -ATP releases a lot of energy 30.5 kJ

ATP + adenosine triphosphate

H₂O water ADP adenosine diphosphate

+ P_i inorganic phosphate 30.5 kJ energy

Energy stored bond between phosphates like a coiled spring.

Diagram and Label on your desk ATP, ADP, AMP

Inorganic Phosphate P or Pi Adenine Ribose

Check your neighbors work!

How do living things use ATP?

List as many as you can on your desk 😂

Compare with your neighbors 😌 😌

Just a few ways living things use ATP.

DNA replication – growth and development

<u>Protein synthesis</u> – growth, development, and important biological molecules (enzymes, hormones, muscle tissue)

Movement – muscles must to have ATP power contraction

Body heat – the metabolic reactions release the energy stored in ATP to your body.

<u>Active Transport</u> – ATP provides energy to move molecules against the gradient.

An amoeba eating food phagocytosis

https://www.youtube.com/watch?v=W6rnhiMxtKU

 $6 O_2 + C_6 H_{12} O_6 \rightarrow 6 CO_2 + 6 H_2 O + Energy (ATP)$ oxygen + glucose \rightarrow carbon dioxide + water + energy

Cellular Respiration

Inner mitochondrial membrane - cristae

matrix matrix Cytoplasm Ox Phos / ETC Glycolysis Chemiosmosis Link Rxn Krebs Cycle Glucose Electron Krebs Acetyl Transport Chain Cycle CoA Pyruvate

Inner membrane space

Proton Motive Force

PMF H+ H+

Gradient that runs ATPase

Mitochondria size $1 - 10\mu m$

Vocabulary

Final electron acceptor

Stalked particle

Rotor

Coiled spring

Oxygen debt

ATP Production

1 NADH 2.5 - 3 ATP 1 FADH 1.5 - 2 ATP

Aerobic Respiration1 FADH₂ **ATP Molecules from 1 Glucose**

Substrate Level phosphorylation

	Glycolysis
	2
	Krebs
	2
	Oxidative phosphorylation
Pe	rspertiveced from NAD from glycolysis6

Aerobic Respiration is only 33% efficient. A car is 25% efficient. 8 reduced from NAD from Krebs cycle24

2 reduced from FAD from Krebs cycle 4

Substrate-level phosphorylation

- -direct formation of ATP from the transfer of a phosphate from a substrate to ADP.
- -occurs in glycolysis and the Krebs cycle.

Oxidative Phosphorylation (ETC)

- -indirect formation of ATP from the oxidation of NADH and FADH₂ and the next step of the transfer of electrons and pumping of protons and using O₂ as a final acceptor
- -occurs via the electron transport chain

Anaerobic Respiration

Alcoholic Fermentation – 2 step process

1. Decarboxylation of pyruvate

$$CH_3COCOOH$$
 \longrightarrow CH_3CHO + CO_2 pyruvate ethanal carbon dioxide

2. Ethanol accepts 1 hydrogen from NADH + H+ to form Ethanol

Summary Diagram

$$CH_3COCOOH$$
 \longrightarrow CH_3CHO + CO_2 pyruvate ethanal carbon dioxide

(b) Alcohol fermentation occurs in yeast.

@ 2011 Pearson Education, Inc.

Anaerobic Respiration

Lactic Acid Fermentation in animals to overcome lack of oxygen

Oxygen Debt — when oxygen is used up more rapidly than it can be supplied.

Once oxygen is available again NADH is regenerated and lactate returns to pyruvate

1. Each pyruvate takes up 2- hydrogens from NADH + H to form lactate (Lactic Acid)

(a) Lactic acid fermentation occurs in humans.

How the NAD+ needed for glycolysis is <u>regenerated</u> during fermentation in yeast and animal cells.

Electron Micrograph of Mitochondria

