ОСНОВЫ БИОТЕХНОЛОГИИ

Словарь

Элюция – метод извлечения вещества (вируса) из твердого носителя вымыванием

Метод дисплея – метод представления гетерологичных белков/ пептидов на поверхности вирусов, клеток или бесклеточных культур для отбора белков или пептидов с требуемыми свойствами

Биосенсор – аналитическая система (биологический материал + преобразователь), позволяющая обнаруживать вещества в исследуемой пробе и оценивать их концентрации

Белковая инженерия

Комплекс методов и подходов по изучению белков и получению белков с новыми свойствами

Создать клонотеку нуклеотидных и аминокислотных последовательностей

Исследовать влияния одиночных замен аминокислотных остатков на фолдинг и функции белка

Разработать методы эффективной модификации белков для придания им необходимых свойств

Разработать методы и подходы для скрининга и отбора белков с требуемыми свойствами

Основные подходы в инженерии белка

рациональный дизайн (rational design) белковых молекул

направленная эволюция (directed evolution) белковых молекул

Рациональный дизайн

направление, нацеленное на создание новых белков de novo путем их пространственного конструирования

Необходимость знаний о пространственной организации белка

Необходимость знаний о внутри- и межмолекулярных взаимодействиях

Несовершенство методик и аппаратуры

Направленная эволюция белковых молекул

направление, нацеленное на создание новых белков, посредством селекции

1

• получение клонотек случайных аминокислотных последовательностей

2

 отбор полипептидных цепей, обладающих хотя бы в небольшой степени требуемыми свойствами

3

• с использованием случайного мутагенеза получение новых клонотек белков, которые применяют в следующем раунде селекции

или

• с использованием генно-инженерных конструкций, экспрессирующих новые белки

Направленная эволюция белковых молекул (варианты)

с помощью направленного мутагенеза заменяют конкретные аминокислотные остатки в активном центре фермента

инженерия белковых поверхностей

с помощью мутаций изменяют участки полипептидной цепи в окрестностях аминокислотных остатков, сближенных на поверхности белковой глобулы, но находящихся в полипептидной цепи на значительном расстоянии друг от друга

Скрининг и отбор белков с заданными свойствами

обнаружение белка с требуемыми свойствами среди большого числа макромолекул, составляющих полученную клонотеку

ПУТИ

случайный скрининг

каждый белок исследуется на наличие требуемых свойств; выбор белков из клонотеки происходит случайно

улучшенный скрининг

возможен, если объекты, составляющие клонотеку, различаются фенотипически (например, по наличию ферментативной активности)

отбор

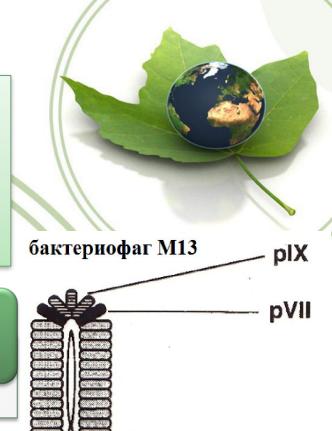
создаются условия для избирательного сохранения компонентов клонотеки, которые обладают определенными свойствами (фаговый, клеточный дисплей)

Дисплейные системы

Схематичное представление	Технология	
	Фаговый (вирусный) дисплей Репертуар 10 ¹⁰ -10 ¹¹	
	Рибосомный дисплей Репертуар 10 ¹⁰ -10 ¹⁴	100
	Молекулярный дисплей (РНК и ДНК опосредованный) Репертуар 10 ¹⁰ -10 ¹⁴	323
	Клеточный (дрожжевой, бактериальный, на клетках млекопитающих) Репертуар 10 ⁶ -10 ¹⁰	

Фаговый дисплей

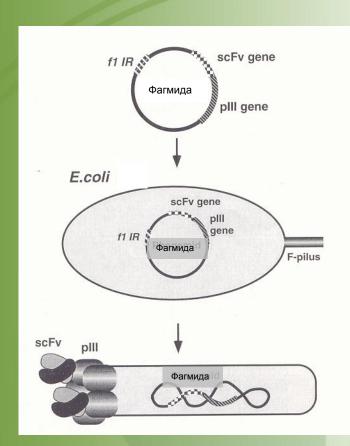
Цель – экспонировать чужеродные белки на поверхности фага


Метод был разработан в 1985 г. для нитчатого бактериофага M13.

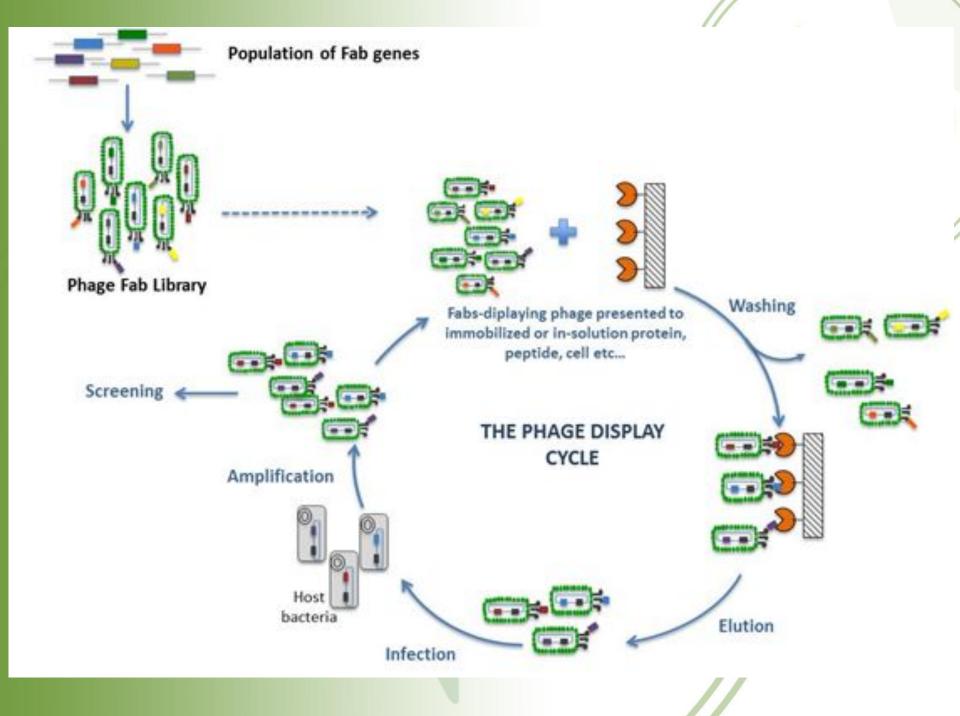
(гены pIII и pVIII являются пригодными сайтами мишенями для вставки чужеродного кДНК фрагмента)

конструируют гибридный ген, состоящий из кодирующих последовательностей целевого белка и одного из белков оболочки фага

бактериофагом инфицируют *E.coli*


в ходе сборки фага гибридные белки включаются в фаговую частицу

pVIII


ssDNA

Инфицирование E.coli фагом-помощником

клетки *E.coli*, трансформированные плазмидной библиотекой / фагмидой, инфицируют хелперным фагом для получения фаговых частиц, на поверхности которых экспонированы различные варианты целевого белка

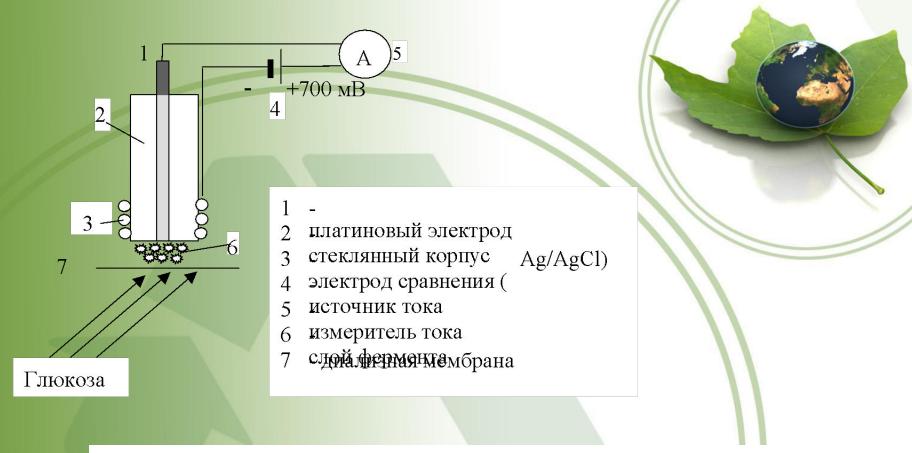
Перспективы практического использования белковой инженерии

*для получения новых лекарственных препаратов; для создания диагностических средств и производства вакцин;

*для исследование механизмов иммунного ответа, а также заболеваний иммунной системы

Экология:

*для получение биокатализаторов в виде целых клеток с иммобилизованными на их поверхности ферментами;


- *для получения биосенсоров с целью диагностики и мониторинга окружающей среды;
- *для создание биоадсорбентов с целью удаления из окружающей среды токсических веществ и ионов тяжелых металлов

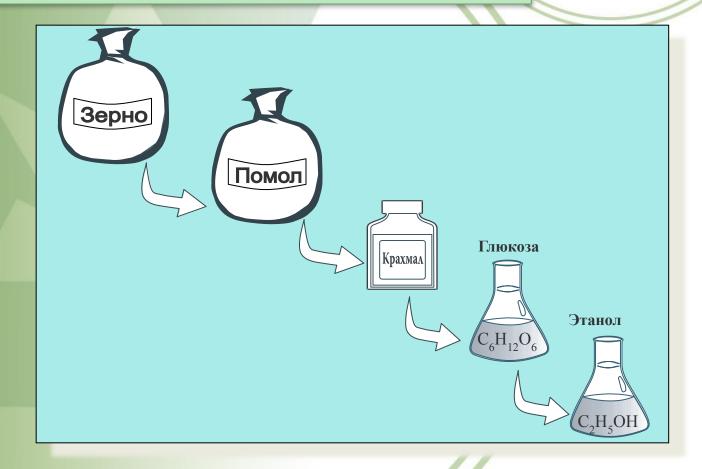
Измерение глюкозы с помощью ферментного электрода (схематическое представление опыта Л. Кларка). Окисление глюкозы ферментом **ГЛЮКОЗООКСИДАЗОЙ** в присутствии кислорода: **ГЛЮКОЗА** + **О**₂ \square **Н**₂**О**₂ + **ГЛЮКОНО-1,5-ЛАКТОН**.

Н₂О₂ восстанавливается на платиновом электроде при

потенциале +700 **мВ**; протекающий в цепи ток пропорционален концентрации пероксида водорода (т.е., косвенно, глюкозы).

Словарь

Иммобилизация – это ограничение подвижности молекул и их конфирмационных перестроек


Аэротенк – система очистки стоков, резервуары в которых происходит перемешивание СВ, микробного ила и воздуха

Метантенк – резервуар для биологической переработки органических загрязнителей с помощью бактерий в анаэробных условиях

Биоремедиация – комплекс методов очистки вод, грунтов и атмосферы с использованием метаболического потенциала биологических объектов – растений, грибов, насекомых, червей и других организмов

ИНЖЕНЕРНАЯ ЭНЗИМОЛОГИЯ

изучает возможность получения, модификации и применения ферментов в биотехнологических процессах

Классификация ферментов

Класс	Катализируемые реакции	Примеры ферментов
Оксидо- редуктазы	Восстановительные и окислительные реакции	Известно более 200 ферментов. Каталаза, глюкооксидаза
Трансфе- разы	Обратимый перенос групп атомов от доноров к акцепторам.	Известно более 450 ферментов. Пируваткиназа, протеинкиназа
Гидролазы	Реакции гидролиза	Известно более 200 гидролаз. Протеаза, амилаза, целлюлаза
Лиазы	Негидролитического отщепления от субстрата групп атомов с образованием двойных связей	Известно более 100 лиаз. Аспартаза, фумараза
Изомеразы	Внутримолекулярные реакции перестройки органических соединений	Известно более 50 ферментов. Глюкозоимераза
Лигазы	Реакции присоединения друг к другу двух различных молекул	Известно более 100. ДНК-лигаза, триптофан-синтетаза

Источники ферментов

Бациллы – биосинтезаторы рибонуклеаз, дезоксирибонуклеаз и протеаз, а дрожжи – глюкоамилаз, инвертаз и кислой фос-фатазы

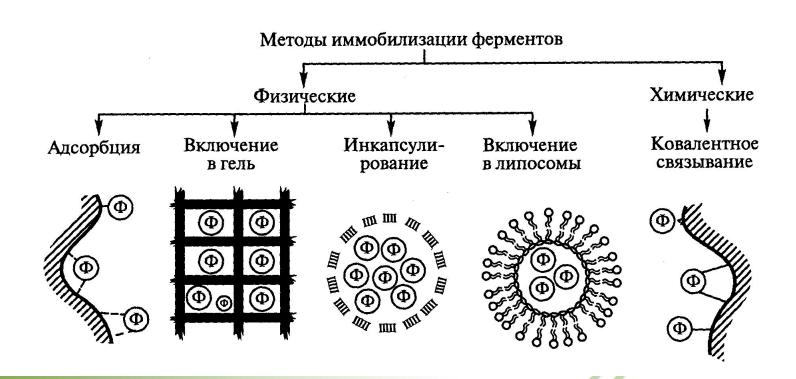
растения

Амилазы выделяют из **ячменя**, кислую фосфатазу из **картофеля**, пероксидазу из **хрена**

животные

Из сердца КРС выделяют лактатдегидрогеназу, из желудка — щелочную фосфатазу.

Желудок свиней используют для получения пепсина


Методы иммобилизации

Физические методы

адсорбция на нерастворимом носителе, включение в поры геля, пространственное отделение с помощью полупроницаемой мембраны и другие

Химические методы

основывается на создании новых ковалентных связей между ферментом и носителем

Преимущества иммобилизованных ферментов

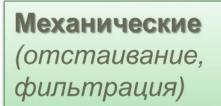
- **МОЖНО**тделять ферменты от реакционной среды, останавливать реакцию в нужный момент и получать продукт не загрязненный ферментом;
 - проводить процесс в непрерывном режиме и регулировать скорость реакции;
 - изменять свойства катализатора, его специфичность, зависимость от условий реакции и чувствительность к денатурирующим воздействиям;
 - регулировать каталитическую активность фермента посредством воздействия на носитель

Ферменты в биотехнологическом производстве

Фермент	Источник, метод иммобилизации	Биотехнология
Ацетилнейтраминат -9-фосфатсинтаза	Фермент Е. coli. Включение в полиакриламидный гель.	Синтез сиаловых кислот.
Пероксидаза	Фермент из хрена. Сополимеризация и включение в гель альгината.	Окисление фенола в сточных водах.
3-Кетостероид- дегидрогеназа	Клетки Mycobacterium globiformis. Включение в полиакриламидный гель.	Трасформация гидрокортизона в преднизолон

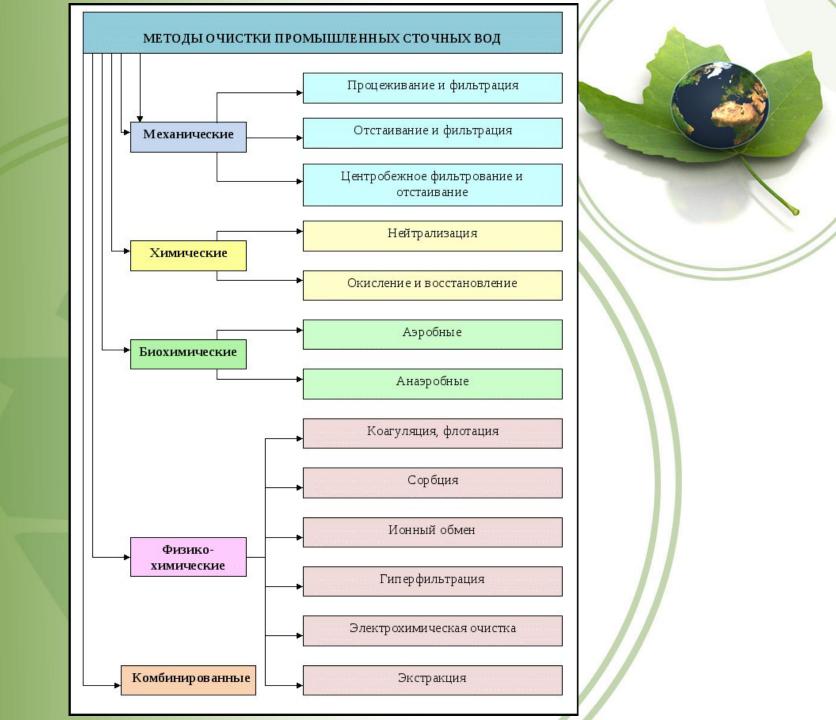
ЭКОЛОГИЧЕСКАЯ БИОТЕХНОЛОГИЯ

решает проблемы загрязнения окружающей среды (биодатчики, биосенсоры, биоиндикаторы, редуценты загрязнителей и пр.)


Методы экологической биотехнологии

- → Биологическая очистка сточных вод
- → Био(фито)ремедиация
- → Создание биобезопасных инсектицидов и гербицидов
- → Получение экологически чистой энергии
- → Создание сельскохозяйственных растений устойчивых к болезням
- → *Бактериальное выщелачивания металлов*

{} Клонирование исчезающих и вымерших видов животных Важнейшая проблема биотехнологии – очистка сточных вод



Методы очистки сточных вод

Химические (воздействие реагентами)

Физикохимические **Биологические** (биохимическое самоочищение))

крупнозернистый материал с иммобилизованными микроорганизмами

БИОЛОГИЧЕСКИЕ ПРУДЫ

водоемы с колониями свободно перемещающихся микроорганизмов

АЭРОТЕНКИ

Аэротенк (от аэро и англ. tank — бак, цистерна) сточные воды отстойник усреднитель

воды

Аэротенки работают в комплексе с усреднителем, отстойниками, регенератором ила и уплотнителем ила (пресс).

метантенк

Метантенк

(от метан и англ. tank – бак, цистерна)

Группы бактерий	Исходные вещества	Продукты
ГИДРОЛИТИЧЕСКИЕ	Органические	Высшие жирные
АЦЕТОГЕННЫЕ	загрязнители	кислоты
ВОДОРОДОПРОДУЦИ-	Высшие жирные	H ₂ ,CO ₂ ,
РУЮЩИЕ	кислоты	CH ₃ COOH
МЕТАНОБРАЗУЮЩИЕ	H ₂ ,CO ₂ , CH ₃ COOH	CH ₄ , CO ₂

Фазы метанового брожения

1

• биогидролиз полимеров и ацидогенез (органические вещества переходят в высшие жирные кислоты, ацетат и водород)

2

• ацетогенез и дегидрогенизация (из высших жирных кислот образуется ацетат и водород)

3

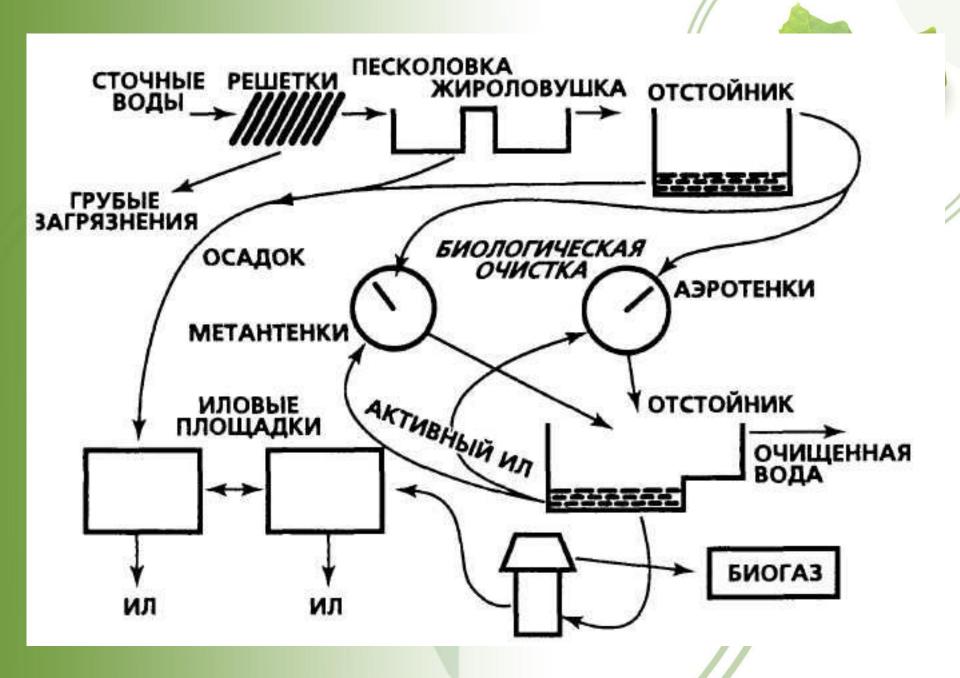
• Метаногенез (из ацетата образуется метан, водород и углекислый газ)

Примеры микроорганизмов

І фаза. ЦЕЛЛЮЛОЗОРАЗРУШАЮЩИЕ

(Bacterioides ruminicola, Butyrivibrio fibriosolvens)

ПРОТЕОЛИТИЧЕСКИЕ


(Clostridium, Petrococcus)

II фаза. АЦЕТОГЕННЫЕ

(Syntrophobacter wolinii)

III фаза. МЕТАНООБРАЗУЮЩИЕ

(Metanobacterium thermoautotrophicum, Metanococcus vannielii)

БИОРЕМЕДИАЦИЯ

В основе метода лежит способность микроорганизмов утилизировать сложные органические вещества с разложением их до простых «биологически безопасных» веществ

БИОРЕМЕДИАЦ

Биоремедиация. Задачи.

 Изучение разнообразия генетических систем микроорганизмов для поиска объектов способных взаимодействовать с ксенобиотиками)

2

 Разработка методов и подходов использования биообъектов в процессах биоремедиации

Биоремедиация. Подходы.

Использование активности природных «диких» микроорганизмов (требуется интенсификатор, например O_2)

Использование активных штаммов, внесенных в виде биопрепаратов в места интенсивных загрязнений

Биоремедиация. Этапы.

Изучение биоразнообразия загрязненных территорий

Выделение микрофлоры, способной к деструкции удаляемых загрязнителей

Активизация местной микрофлоры (биостимуляция).

Интродукция в загрязненные участки специальных микроорганизмовдеструкторов (биоремедиация)

Биостимуляция

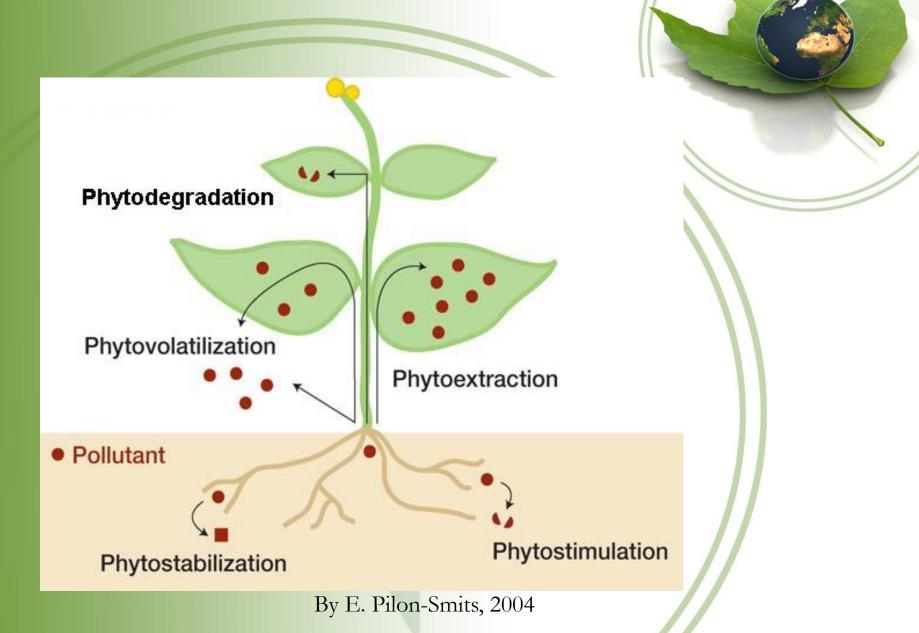
(Природные микробные сообщества)

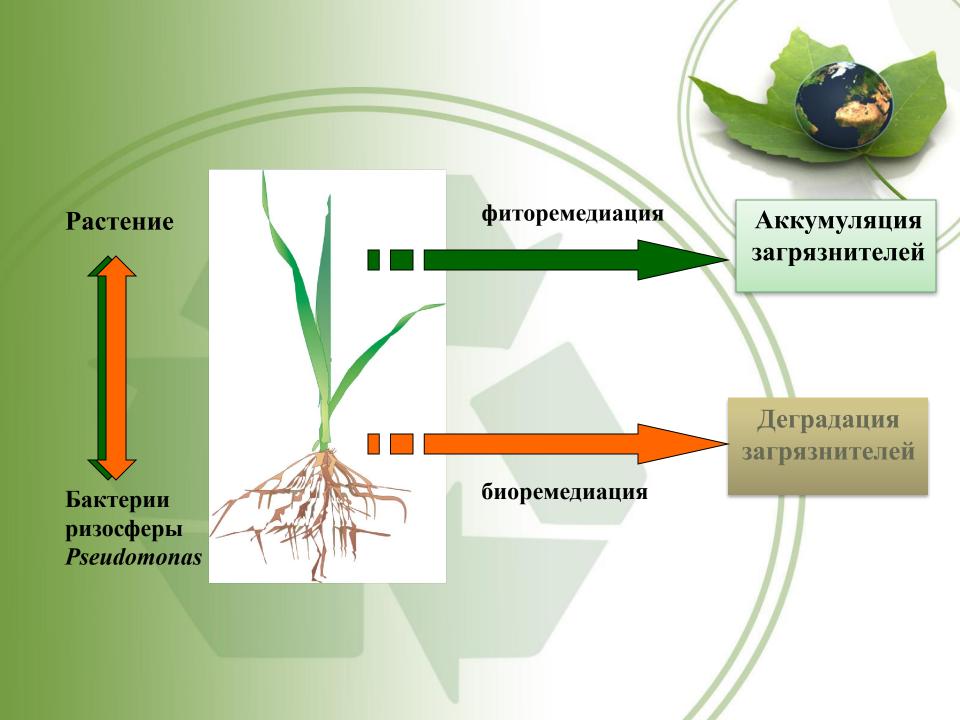
Биоремедиация

(Искусственные микробные биопрепараты)

Биофиторемедиация

(Сообщества растений и микроорганизмов)


Химический анализ


ЗАГРЯЗНЕНИЯ

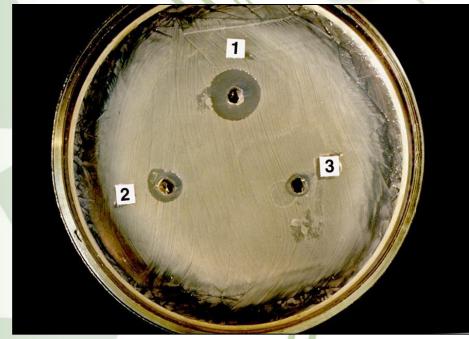
Инженерные технологии

Мониторинг биоремедиации

Биофиторемедиация

Конструирования трансгенных растений, устойчивых против насекомых вредителей

- 1. СИНТЕЗ СПЕЦИФИЧЕСКИХ ТОКСИНОВ
- 2. СИНТЕЗ ГИДРОЛИТИЧЕСКИХ ФЕРМЕНТОВ, ДЕЙСТВУЩИХ НА КЛЕТОЧНЫЕ СТЕНКИ ЛИЧИНОК НАСЕКОМЫХ И ДРУГИХ ВРЕДИТЕЛЕЙ И ПАТОГЕНОВ /ХИТИНАЗА, β-1,3- ГЛЮКОНАЗЫ, PR-БЕЛКИ/
- 3. СИНТЕЗ ИНГИБИТОРОВ ПРОТЕИНАЗ И ИНГИБИТОРОВ ФЕРМЕНТОВ, РАСЩЕПЛЯЮЩИХ ПОЛИСАХАРИДЫ РАСТЕНИЯ



- 4. МОДИФИКАЦИЯ ВТОРИЧНОГО МЕТАБОЛИЗМА РАСТЕНИЙ ДЛЯ:
- А) ЛИМИТИРОВАНИЯ НЕОБХОДИМЫХ ВЕЩЕСТВ
- **Б) СИНТЕЗА НОВЫХ РЕПЕЛЛЕНТОВ И ТОКСИНОВ**
- 5. РЕГУЛЯЦИЯ ЗАЩИТНОГО ОТВЕТА:
- А) ТКАНЕСПЕЦИФИЧЕСКАЯ ЭКСПРЕССИЯ ГЕНОВ
- Б) РЕГУЛЯЦИЯ ЭКСПРЕССИИ ГЕНОВ РАЗЛИЧНЫМИ ЕСТЕСТВЕННЫМИ И ИСКУССТВЕННЫМИ ФАКТОРАМИ

Растения устойчивые к фитопатогенам

Повышенная устойчивость трансгенных растений к грибному патогену Phomopsis helianhi

В - трансгенное растение

A

B

Примерный список тем, входящий в тест на зачете

- 1. История биотехнологии. Характеристика исторических периодов. Наиболее значимые открытия, сыгравшие важную роль в становлении науки.
- 2. Общие понятия биотехнологии: биотехнологическая система, биотехнологический процесс, биотехнологический объект.
- 3. Биотехнологические объекты, определение, характеристика места биообъекта в биотехнологической системе, классификация, примеры практического применения.
- 4. Микроорганизмы как биообъекты. Примеры, практическое использование в биотехнологиях.
- 5. Культуры клеток и тканей как биообъекты. Примеры, практическое использование в биотехнологиях.
- 6. Биотехнологический процесс. Этапы. Краткая характеристика этапов биотехнологического процесса.
- 7. Характеристика микроорганизмов как объектов селекции. Селекция микроорганизмов в биотехнологии.
- 8. Мутагенез: определение, формы мутагенеза, мутагенные факторы.
- 9. Отбор мутантных микроорганизмов созданных в процессе селекции на подготовительной стадии биотехнологического процесса.
- 10. Селекция биообъектов. Этапы, подходы, методы.

- 11. Генетическая инженерия: цель, техника, биообъекты, примеры практического применения, современные достижения.
- 12. Ферменты генетической инженерии. Классификация, характеристика катализируемых реакций.
- 13. Методы получения гена в генетической инженерии. Краткая характеристика, достоинства и недостатки методов.
- 14. Вектора в генетической инженерии. Определение, классификации, требования, краткая характеристика векторов.
- 15. Рекомбинантная ДНК. Определение, назначение, методы получения рекомбинантной ДНК в генетической инженерии.
- 16. Методы введения рекомбинантной ДНК в клетку-реципиент и отбор модифицированных клеток в генетической инженерии.
- 17. Трансгенез растений. Вектора. Основные стратегии. Методы введения трансгенов и отбора трансгенных организмов.
- 18. Трансгенез животных. Вектора. Основные стратегии. Методы введения трансгенов и отбора трансгенных организмов.
- 19. Клеточная инженерия: цель, техника, биообъекты, примеры практического применения, современные достижения.
- 20. Методы культивирования клеток и тканей растений. Условия культивирования, классификация и краткая характеристика культур растений в клеточной инженерии

- 21. Соматические гибриды растений. Техника получения, современные достижения, примеры практического применения.
- 22. Протопласты: определение, использование в клеточной инженерии, методы и условия выделения протопластов.
- 23. Культивирование и слияние протопластов в клеточной инженерии. Методы, условия, фьюзогены.
- 24. Практическое использование культур клеток и тканей растений. Биосинтез и биотрансформация, микроразмножение, примеры трансгенных растений с ценными свойствами.
- 25. Клеточная инженерия животных. Методы, объекты, техника, современные достижения, практическое применение.
- 26. Клеточные и тканевые культуры животных. Классификации культур, условия культивирования, среды, методы получения соматических гибридов, практическое применение.
- 27. Стволовые клетки. Характеристика. Классификация. Перспективы применения.
- 28. Клонирование. Характеристика метода. Классификация. Перспективы применения.
- 29. Биотехнологический процесс. Стадия культивирования. Основные этапы, характеристика сред для микроорганизмов, клеток растений и животных. Аппаратура.
- 30. Биотехнологический процесс. Стадия культивирования. Режимы культивирования биообъектов. Стадии роста культуры в биореакторе, синтез целевого продукта.

- 31. Биотехнологический процесс. Стадия получения продукта. Основные этапы и методы отделения и очистки биотехнологического продукта. Примеры биотехнологических продуктов.
- 32. Экологическая биотехнология: цель, методы, биообъекты, примеры практического применения, современные достижения.
- 33. Экологическая биотехнология. Проблема питьевой воды. Аэробные методы очистки сточных вод.
- 34. Экологическая биотехнология. Проблема питьевой воды. Анаэробные методы очистки сточных вод.
- 35. Экологическая биотехнология. Биоремедиация, биофиторемедиация.
- 36. Биотехнология: цель, предмет, задачи, основные направления биотехнологии. Современные достижения в области биотехнологии.
- 37. Инженерная энзимология. Цель, проблемы. Перспективы. Источники ферментов.
- 38. Иммобилизованные ферменты. Преимущества, методы иммобилизации.
- 39. Иммобилизованные ферменты. Носители для иммобилизации, практическое использование.
- 40. Белковая инженерия. Направления, методы, перспективы.