

Corynebacterium Erysipelothrix & Listeria

Pathogenic Anaerobic Gram-Positive Bacilli

Corynebacterium diphtheriae
C. jeikeium (CDC group JK)
C. urealyticum (Coryneform group D-2)
C. pseudodiphtheriticum

C. minutissimum

Arcanobacterium

(Corynebacterium)

C. ulcerans

C. xerosis

Erysipelothrix

rhusiopathiae

Gardnerella vaginalis

Endocarditis; lower respiratory tract infections
Skin infections

Opportunistic infections

Urinary tract infections

Diphtheria

Skin infections (erythrasma); systemic infections Pharyngitis (mild to

diphtheria-like)
Opportunistic infections
Pharyngitis

haemolyticum

Actinomyces (Corynebacterium) pyogenes

Rhodococcus (Corynebacterium) equi

Listeria monocytogenes

Granulomatous ulcerative infections

Suppurative pneumonia; opportunistic infections

Meningitis; septicemia;

granulomatosis
infantiseptica; endocarditis
Erysipeloid; septicemia;

Erysipeloid; septicemia; endocarditis Bacterial vaginosis

Corynebacteria (Genus Corynebacterium)

- ☐ Aerobic or facultatively anaerobic
- □Small, **pleomorphic** (club-shaped), gram-positive bacilli that appear in short chains ("V" or "Y" configurations) or in clumps resembling **"Chinese letters"**
- ☐ Cells contain **metachromatic granules** (visualize with methylene blue stain)
- □Lipid-rich cell wall contains meso-diaminopimelic acid, arabino-galactan polymers, and short-chain mycolic acids
- □ Lysogenic bacteriophage encodes for potent exotoxin in virulent strains

Distinguishing Features of CMN Group

CELL WALL:	<u>Corynebacterium</u>	<u>Mycobacterium</u>	Nocardia
□ DL-DAP	+	+	+
LL-DAP	•	_	
gly		£ _	_
Ага	+	+	+
gal	+	+	+
Acid-fast	_	+	+
Catalase			<u>+</u> +
☐ Serological Cross-			
reactivity	+	+	+
Cell Surface K-Ag	+	-	-
☐ Mycolic Acids	$C_{32} - C_{36}$	$C_{50} - C_{90}$	C ₅₀
	Corynemycolic	Mycolic Tetral	nydronucardic
	(C_{32})		(C_{50})
	Corynemycolenic		
A 11	(C_{32})		
Adjuvant activity	+	+	-
Cord factor	+ .	+	+
Sulfolipids	70777	+	-
IRON-CHELATING COM	POUNDS -	+	+
POLYPHOSPHATE	+	+	+
PERCENT G + C	55-58	64-69	62-68

Pathogenic Corynebacterial Species

- Corynebacterium diphtheriae
- Corynebacterium jeikeium
- Corynebacterium urealyticum

Corynebacterium urealyticum

Urinary tract infections (UTI's); rare but important

□**Urease** hydrolyzes urea; release of NH₄⁺, increase in pH, alkaline urine, renal stones

Corynebacterium jeikeium

- □ Opportunistic infections in immunocompromised (e.g., patients with blood disorders, bone marrow transplants, intravenous catheters)
- ☐ Multiple antibiotic resistance common (MDR)
- □ Carriage on skin of up to 40% of hospitalized patients (e.g., marrow t-plants)

Corynebacterium jeikeium Carriers

Corynebacterium diphtheriae

- □ Respiratory diphtheria (pseudomembrane on pharynx) and cutaneous diphtheria
- □Prototype A-B exotoxin acts systemically
 - Toxoid in DPT and TD vaccines
- □ **Diphtheria toxin** encoded by tox gene introduced by lysogenic bacteriophage (prophage)
- □Selective media: cysteine-tellurite; serum
- tellurite; Loeffler's
- ☐Gravis, intermedius, and mitis colonial morphology

Epidemiology of Diphtheria

DISEASE/BACTERIAL FACTORS

Diphtheria exotoxin disrupts peptide formation in ribosomes

Phospholipase D increases vascular permeability and promotes spread of organism

TRANSMISSION

Person to person by inhalation or skin contact Asymptomatic carriage maintains bacteria in population

WHO IS AT RISK?

Unvaccinated people People in crowded, poor urban areas Children

GEOGRAPHY/SEASON

Worldwide, where vaccination programs are not in place No seasonal incidence

MODES OF CONTROL

Early use of diphtheria antitoxin to neutralize exotoxin Penicillin or erythromycin effective for infected patients and asymptomatic carriers

Active immunization with diphtheria toxoid during childhood (DPT vaccine), then booster shots every 10 years for life

Antimicrobial prophylaxis for close contacts of patients with diphtheria

Incidence of Diphtheria in the USA

Incidence of Diphtheria in Former Soviet Union

Virulence Factors in Corynebacterium Species

C. diphtheriae

C. jeikeium

C. urealyticum

C. pseudotuberculosis

C. ulcerans

Diphtheria exotoxin

Antibiotic resistance

Antibiotic resistance; urease

production

Diphtheria exotoxin;

phospholipase D

Diphtheria exotoxin;

phospholipase D

Diphtheria tox Gene in Beta Bacteriophage and Prophage

See Handout on Exotoxins

endocytosis

Mechanism of Action of Diphtheria Toxin: C. diphtheriae Inhibition of Protein Synthesis Diphtheria toxin Cell membrane Cell death **Prevents** protein **Inactivates** synthesis elongation factor-2 by ribosome

Molecular Structure of Diphtheria Toxin

Properties of A-B Type Bacterial Toxins

	TOXIN	ORGANISM	GENETIC CONTROL	SUBUNIT STRUCTURE	TARGET CELL RECEPTOR	BIOLOGICAL EFFECTS
	Anthrax toxins	Bacillus anthracis	Plasmid	Three separate proteins (EF, LF, PA)	Unknown, probably gly- coprotein	EF + PA: increase in target-cell cAMP level, localized edema; LF + PA: death of target cells and experimental animals
	Bordetella adeny- late cyclase toxin	Bordetella species	Chromosomal	A-B	Unknown, probably gly- colipid	Increase in target cell cAMP level, modified cell function or cell death
	Botulinum toxin	C. botulinum	Phage	A-B	Possibly ganglioside (GD ₁₆)	Decrease in peripheral, presynaptic acetyl- choline release, flaccid paralysis
	Cholera toxin	V. cholerae	Chromosomal	•	Ganglioside (GM ₁) n-binding epidermal growth	Activation of adenylate cyclase, increase in cAMP level, secretory
-	Diphtheria toxin	C. diphtheriae	Phage	factor A-B	on heart & nerve surfaces Probably glycoprotein	diarrhea Inhibition of protein syn- thesis, cell death
	Heat-labile en- terotoxins	E. coli	Plasmid	Similar or ic	dentical to cholera toxin	,, ,
	Pertussis toxin	B. pertussis	Chromosomal	A-5B	Unknown, probably gly- coprotein	Block of signal transduc- tion mediated by target G proteins
	Pseudomonas exotoxin A	P. aeruginosa	Chromosomal	A-B	Unknown, but different from diphtheria toxin	Similar or identical to diphtheria toxin
	Shiga toxin	Shigella dysente- riae	Chromosomal	A-5B	Glycoprotein or glyco- lipid	Inhibition of protein syn- thesis, cell death
	Shiga-like toxins	Shigella species, E. coli	Phage	Similar or i	identical to Shiga toxin	100 GC 707000
	Tetanus toxin	C. letani	Plasmid	A-B	Ganglioside (GT ₁) and/or GD _{1b}	Decrease in neurotrans- mitter release from in- hibitory neurons, spas- tic paralysis

Diagnostic Schick Skin Test

Immune Status to C. diphtheriae and Sensitivity to Diphtheria Toxoid

	<u>TO</u> 2	XIN	TOXOID		
	36 h	120 h	36 h	120 h	Interpretation
POSITIVE REACTION		+ .		+	Nonimmune, Nonsensitive
NEGATIVE REACTION	=:	•	-	•	Immune, Nonsensitive
PSEUDO REACTION	+	<u>.</u>	+	•	Immune, Sensitive
COMBINED REACTION	+	+	+	, -	Nonimmune, Sensitive

In vivo Detection of Diphtheria Exotoxin

Listeria monocytogenes

- ☐ Gram-positive beta-hemolytic bacillus
- **Multiply at refrigerator temperatures (4°C)**
- □ Tumbling motility at room temperature
- □CAMP Test positive (like Group B Streptococcus)

Where do we find Listeria?

- □Intestinal tract of mammals & birds (especially chickens)
- □Persists in soil
- ■Soft cheeses & unwashed raw vegetables
- □Raw or undercooked food of animal origin
 - Luncheon meats
 - Hot dogs

Large scale food recalls have become common

Epidemiology of Listeriosis

DISEASE/BACTERIAL FACTORS

Organism can grow in macrophages and epithelial cells
Asymptomatic carriage is possible
Virulent strains produce listeriolysin O
Can grow in cold temperatures (refrigerators)

TRANSMISSION

Ingestion of contaminated food products
Transplacental

WHO IS AT RISK?

Neonates Elderly

Pregnant women

Immunocompromised patients

GEOGRAPHY/SEASON

Ubiquitous and worldwide

Sporadic, with peak occurrence in the warmer months

MODES OF CONTROL

Penicillin or ampicillin, alone or in combination with an

aminoglycoside

People at high risk should avoid eating raw or partially cooked food of animal origin, soft cheeses, and unwashed raw vegetables

Epidemiology of Listeria Infections

Listeriosis

- ■Neonates, elderly & immunocompromised
- □Granulomatosis infantiseptica
 - Transmitted to fetus transplacentally
 - Early septicemic form: 1-5 days post-partum
 - Delayed meningitic form: 10-20 days following birth
- Intracellular pathogen
 - Cell-mediated and humoral immunity develop
 - Only cell-mediated immunity is protective

Methods That Circumvent Phagocytic Killing

METHOD

Inhibition of phagolysosome infusion Resistance to lysosomal enzymes

Adaptation to cytoplas- Listeria species, Francisella mic replication

EXAMPLE

Legionella species, Mycopacrerium tuberculosis, Chlamydia species Salmonella typhimurium, Coxiella species, Ehrlichia species, Mycobacterium leprae, Leishmania species

species, Rickettsia species

Intracellular Survival & Replication of Listeria

Erysipelothrix rhusopathiae

- ☐Gram-positive non-motile bacillus; forms filaments
- □Occupational disease of meat and fish handlers, hunters, veterinarians
 - Preventable with protective gloves & clothing
- **Erysipeloid** in humans; erysipelas in swine & turkeys
 - Organisms enter through break in skin
 - Nonsuppurative, self-limiting skin lesions with erythema and eruption
 - Peripheral spread may lead to generalized infection, septicemia and/or endocarditis
 - Organisms can be isolated from skin biopsy

Epidemiology of Erysipelothrix Infection

Disease is common in swine but rare in humans
Organism is ubiquitous
TRANSMISSION

Inoculation through abrasion or wound

WHO IS AT RISK?

DISEASE/BACTERIAL FACTORS

Those who occupationally handle meat (butchers), poultry, fish, or animals (farmers, veterinarians)

Worldwide distribution in animals

MODES OF CONTROL

No vaccine available

GEOGRAPHY/SEASON

Penicillin is very effective
Organism is resistant to the sulfonamides, aminoglycosides, and vancomycin
Covering of exposed skin surfaces when exposed occupationally to animals

Corynebacterium diphtheriae

- □ Respiratory diphtheria (pseudomembrane on pharynx) and cutaneous diphtheria
- □Prototype A-B exotoxin acts systemically
 - Toxoid in DPT and TD vaccines
- Diphtheria toxin encoded by tox gene introduced by lysogenic bacteriophage (prophage)
- □Selective media: cysteine-tellurite; serum
- tellurite; Loeffler's
- ☐ Gravis, intermedius, and mitis colonial morphology

Diphtheria tox Gene in Beta Bacteriophage and Prophage

See Handout on Exotoxins

Mechanism of Action of Diphtheria Toxin: C. diphtheriae Inhibition of Protein Synthesis Diphtheria toxin Cell membrane Cell death **Prevents** protein **Inactivates** synthesis elongation factor-2 REVIEW by ribosome

Corynebacterium jeikeium

- □ Opportunistic infections in immunocompromised (e.g., patients with blood disorders, bone marrow transplants, intravenous catheters)
- ☐ Multiple antibiotic resistance common (MDR)
- □ Carriage on skin of up to 40% of hospitalized patients (e.g., marrow t-plants)

Corynebacterium urealyticum

Urinary tract infections (UTI's); rare but important

□**Urease** hydrolyzes urea; release of NH₄⁺, increase in pH, alkaline urine, renal stones

Listeria monocytogenes

- ☐ Gram-positive beta-hemolytic bacillus
- Multiply at refrigerator temperatures (4°C)
- □ **Tumbling motility** at room temperature
- □CAMP Test positive (like Group B Streptococcus)

Epidemiology of Listeria Infections

Listeriosis

- ■Neonates, elderly & immunocompromised
- □Granulomatosis infantiseptica
 - Transmitted to fetus transplacentally
 - Early septicemic form: 1-5 days post-partum
 - Delayed meningitic form: 10-20 days following birth
- Intracellular pathogen
 - Cell-mediated and humoral immunity develop
 - Only cell-mediated immunity is protective

Intracellular Survival & Replication of Listeria

Erysipelothrix rhusopathiae

- ☐Gram-positive non-motile bacillus; forms filaments
- □Occupational disease of meat and fish handlers, hunters, veterinarians
 - Preventable with protective gloves & clothing
- **Erysipeloid** in humans; erysipelas in swine & turkeys
 - Organisms enter through break in skin
 - Nonsuppurative, self-limiting skin lesions with erythema and eruption
 - Peripheral spread may lead to generalized infection, septicemia and/or endocarditis
 - Organisms can be isolated from skin biopsy

