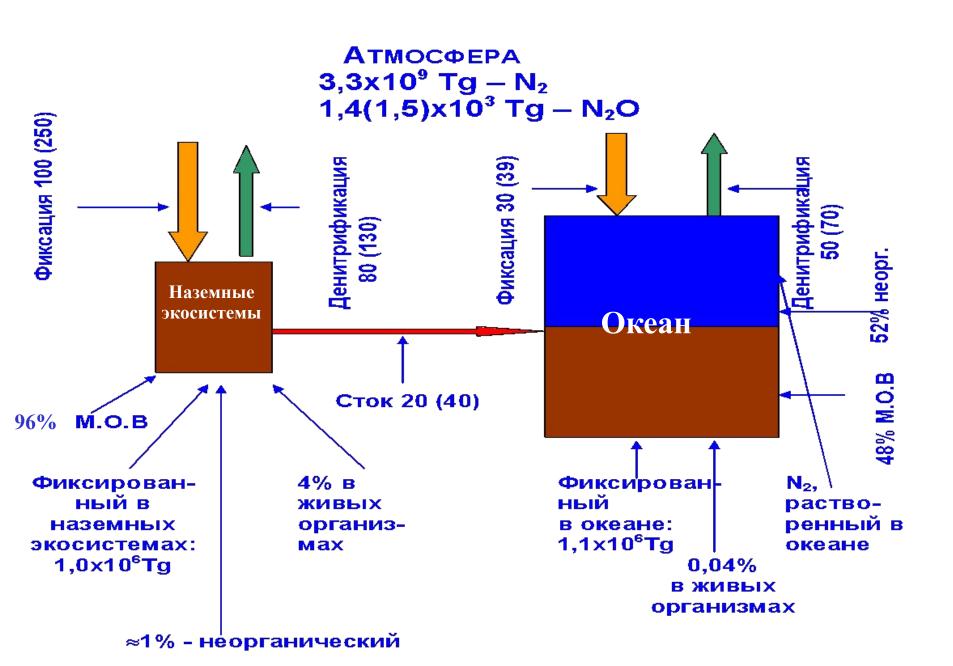
Круговорот азота

Пулы азота: В почве и воде: □органический N, $\square NH_4^+ (NH_3),$ $\square NO_2^{-}$, $\square NO_3^{-1}$ В атмосфере: $\square N_2$ $\square NH_3$ $\square NO_2$

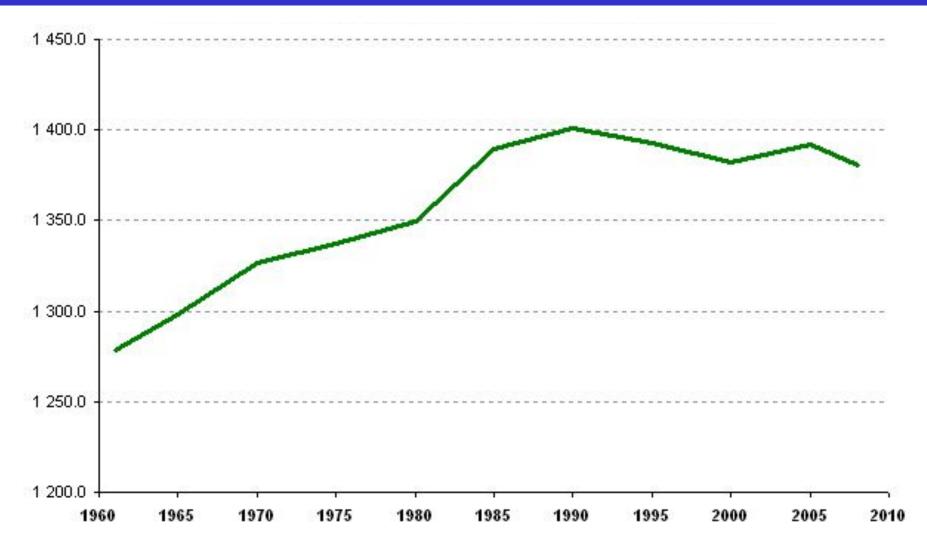

Энергетические характеристики основных реакций круговорота азота

Реакции	Выход энергии, ккал
ДЕНИТРИФИКАЦИЯ	
1. $C_6H_{12}O_6+6KNO_3\rightarrow 6CO_2+3H_2O+6KOH+3N_2O$	545 (на 1моль глюкозы)
2. $5C_6H_{12}O_6+24KNO_3\rightarrow 30CO_2+18H_2O+24KOH+12N_2$	570 (на 1моль глюкозы)
3. 5S+6KNO ₃ +2CaCO ₃ →3K ₂ SO ₄ +2CaSO ₄ + 2CO ₂ +3 <u>N</u> ₂	132 (на 1моль серы)
ДЫХАНИЕ	
4. C ₆ H ₁₂ O ₆ +6O ₂ →6CO ₂ +6H ₂ O	686
АММОНИФИКАЦИЯ	
5, CH, NH ₂ COOH+1½O ₂ →2CO ₂ +H ₂ O+NH ₃	176
нитрификация	
6. NH ₃ +1½O ₂ →HNO ₂ +H ₂ O	66
7. $KNO_2 + 1\frac{1}{2}O_2 \rightarrow KNO_3$	17,5
ФИКСАЦИЯ АЗОТА	
8. N ₂ →2N «активация азота»	-160
9. 2N+3H ₂ →2NH ₃	12,8

Распределение азота в различных резервуарах Земли

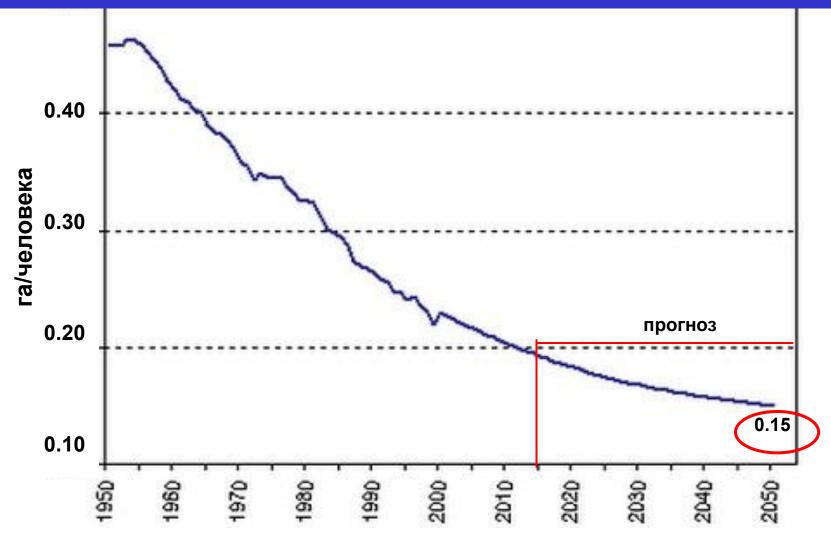
Резервуары	Млн. т
РАСТИТЕЛЬНАЯ БИОМАССА (наземная)	1,1-1,4x10 ⁴
ЖИВОТНАЯ БИОМАССА (наземная)	2x10 ²
ОПАД (наземный)	1,9-3,3x10 ³
ПОЧВА	
-органическое вещество	3,0x10 ⁵
-нерастворимый неорганический	1,6 x10 ⁴
-микроорганизмы	5,0x10 ²
ПОРОДЫ	1.9×10^{11} (1)
ОСАДКИ	$4.0 \times 10^8 (3)$
угольные отложения	1,2x10 ⁵
OKEAH	
растительная биомасса	3,0x10 ²
животная биомасса	1,7x10 ²
мертвое органическое вещество	5,3x10 ⁵
N ₂ (растворенный)	2,2x10 ⁷ (4)
NO_3^{-1}	5,7x10 ⁵
NH ₄ ³⁺	7,0x10 ³
АТМОСФЕРА	
N_2	3,9x10 ⁹ (2)
$N_2^{2}O$	1,3x10 ³
NH ₃ , NO _x , NO ₃ -, органический N	3-4

Глобальный биогеохимический цикл азота



Динамика численности населения Мира за последние 50 лет и прогноз до 2100 г.

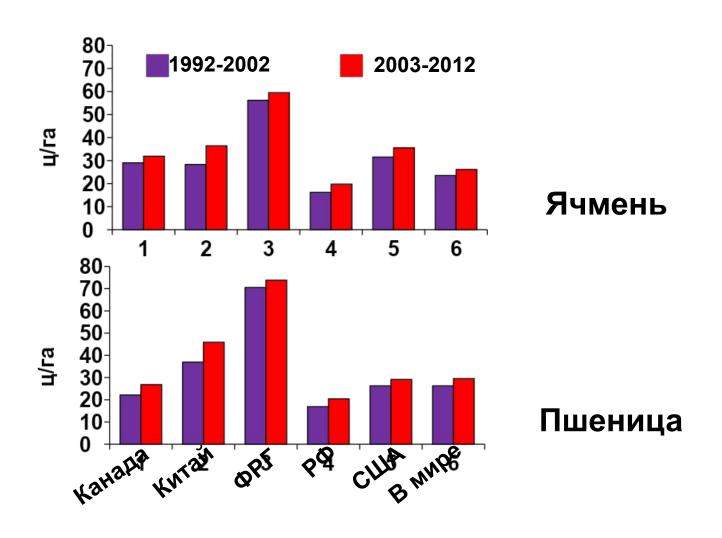
```
в 1960 — 3 млрд,
в 1993 — 5,65 млрд,
12 октября 1999 года население Земли составило 6 млрд человек
в 2003 — 6,3 млрд,
в 2006 — 6,5 млрд,
в 2010 — 6,8 млрд,
1 ноября 2011 — 7,0 млрд человек<sup>[1][2]</sup>,
прогноз на 2050 год — 9 миллиардов человек<sup>[3][4]</sup>, на 2100 год — 10 млрд
```


https://ru.wikipedia.org/wiki/%CD%E0%F1%E5%EB%E5%ED%E8%E5_%C7%E5%EC%EB %E8

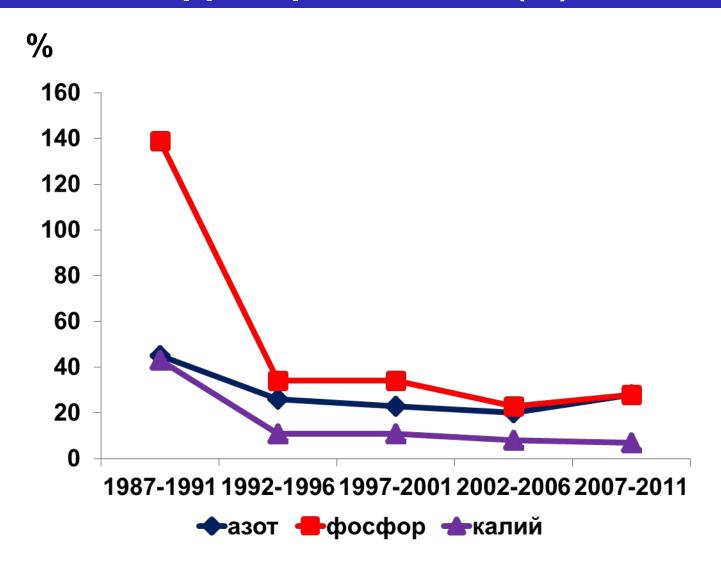
Изменение площади пахотных земель в Мире за последние 50 лет (млн. га)

http://yandex.ru/images/search?img_url=http%3A%2F%2F900igr.net%2Fdatas%2Fgeografija%2FPr irodnye-resursy%2F0010-010-Zemelnye-resursy-mira.jpg&uinfo

Динамика площади пашни в Мире в расчёте на 1 чел.

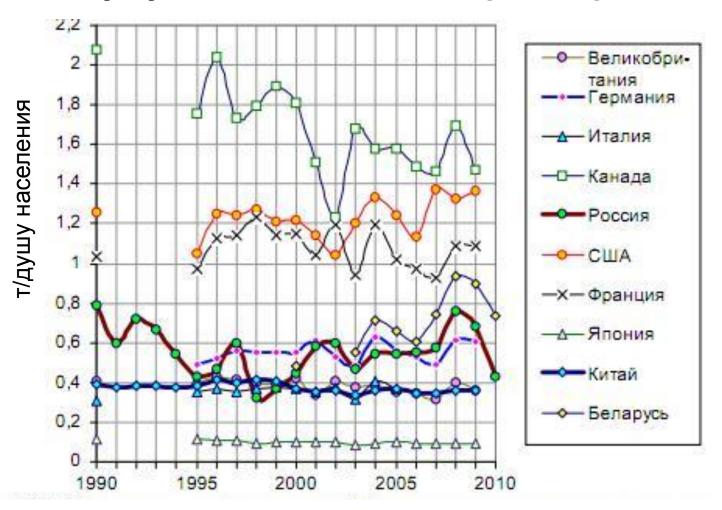

http://yandex.ru/images/search?img_url=http%3A%2F%2F900igr.net%2Fdatas%2Fgeografija%2FPr irodnye-resursy%2F0010-010-Zemelnye-resursy-mira.jpg&uinfo

Население и удельная площадь пашни на 1 человека

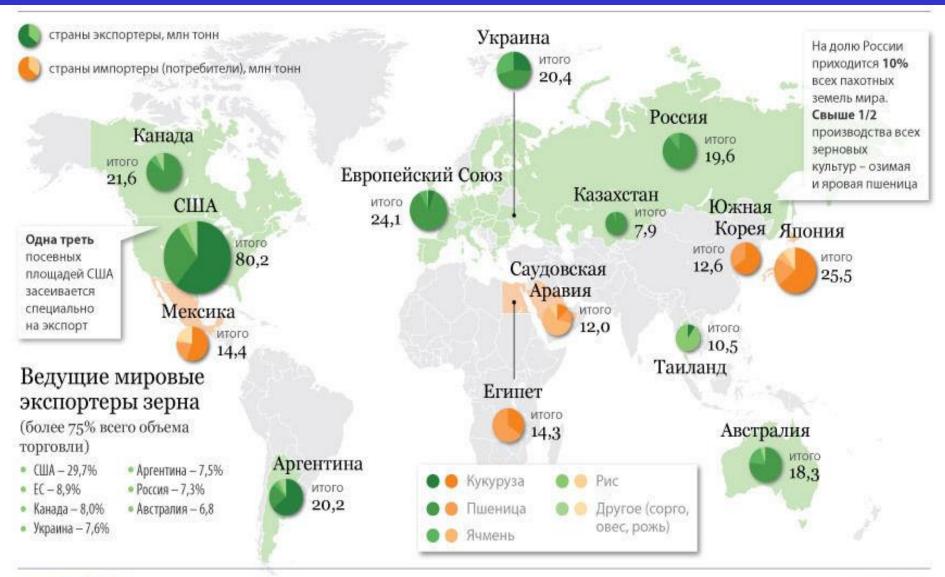

Регионы, страны	Население, млн. чел.	Пашня, млн. га	Удельная площадь, га/чел.
США	315	186	0.6
Западная Европа	380	95	0.25
Россия	140	85	0.6
Весь мир	7000	1400	0.2

Без минеральных удобрений в Нечерноземье можно прокормить только 1 чел./га пашни

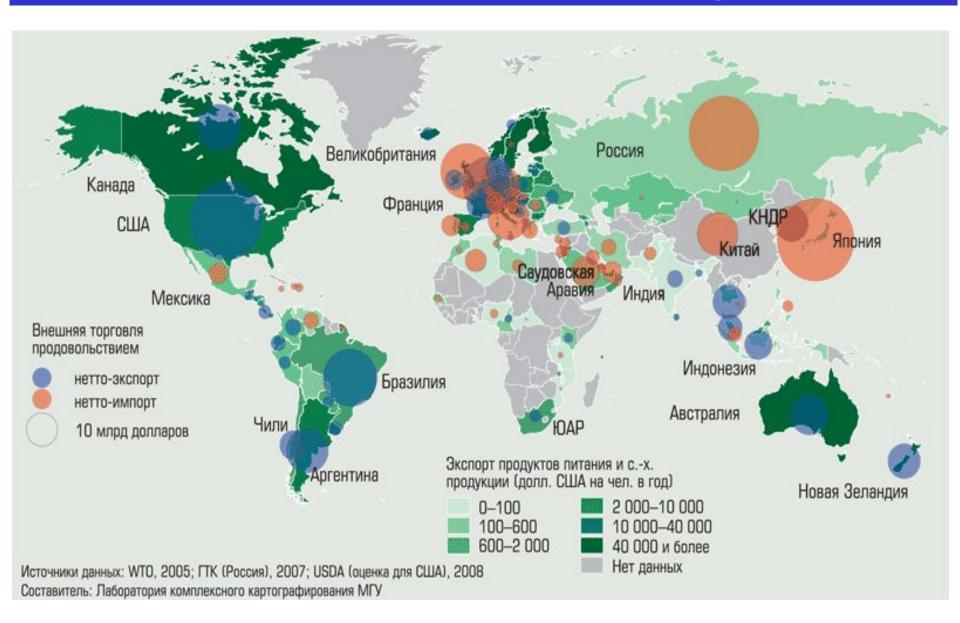
Урожайность зерновых в некоторых странах и мире


Компенсация выноса питательных веществ с урожаями внесением минеральных удобрений на территории России (%)

Ведущие потребители минеральных удобрений в мире (2010 г.)

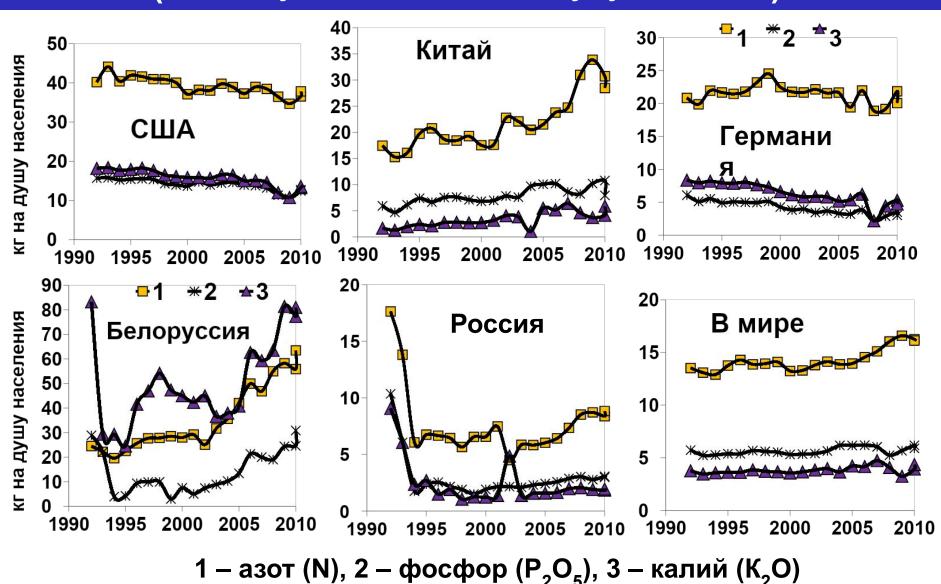

N		P ₂ O ₅ K ₂ O			
Страна	М лн. т.	Страна	Млн.т.	Страна	Млн.т.
1. Китай 2. Индия 3. США 4. Франция 5. Пакистан 6. Индонезия	26.1 10.9 10.5 2.32 2.26 1.96	1. Китай 2. Индия 3. США 4. Бразилия 5. Австралия 6. Франция	8.60 4.21 3.86 2.34 1.10 0.80	1. США 2. Китай 3. Бразилия 4. Индия 5. Франция 6. Малайзия	4.47 3.47 2.56 1.57 1.03 0.64
17. Россия	0.96	19. Россия	0.28	21. Россия	0.18

Производство зерновых и зернобобовых на душу населения в некоторых странах

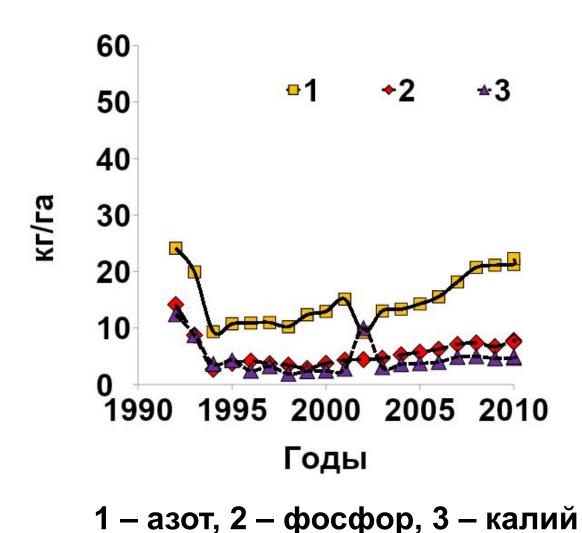


http://yandex.ru/images/search?img_url=http%3A%2F%2F900igr.net%2Fdatas%2Fgeografija%2FPr irodnye-resursy%2F0010-010-Zemelnye-resursy-mira.jpg&uinfo

Мировые экспортёры и импортёры зерна



Международная торговля сельскохозяйственной продукцией



Применение минеральных удобрений в земледелии некоторых стран и в мире

(в действующем веществе, кг/душу населения)

Средние дозы минеральных удобрений (N,P,K) на посевах с/х культур в РФ

Потребность в азоте

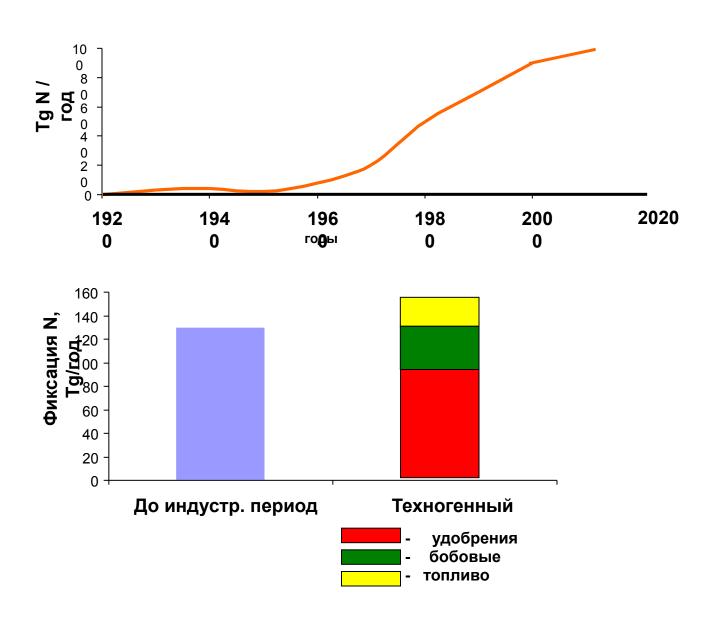
Потребность населения в протеине 60-70 г/чел./день или 4 кг *N*/чел./год

Потребность в *N*уд. рассчитывается исходя из равного количества потребляемого протеина (животного и растительного) 50% и 15% - коэффициенты усвоения, соответственно.

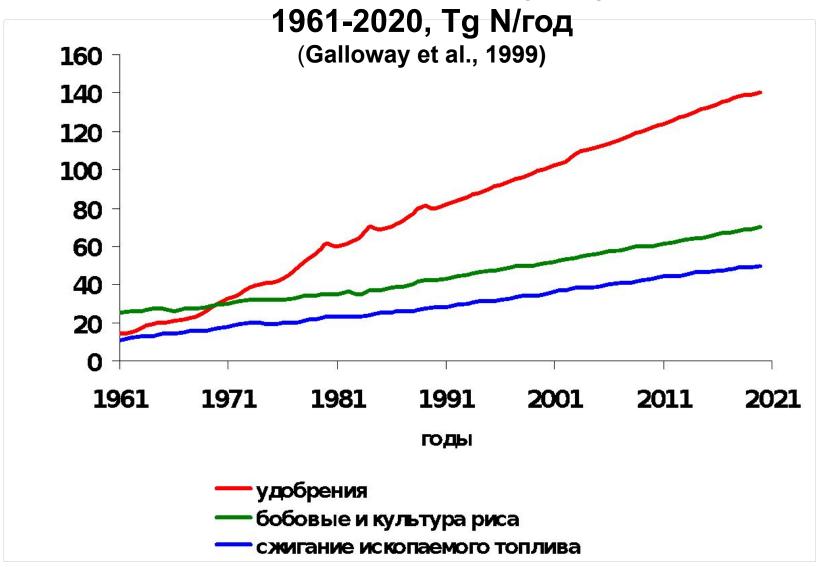
*N*уд. – потребность = 17 кг *N*/чел./год Для населения 140 млн. человек – 2,4 млн.т *N* уд. Каждый гектар пашни России должен получать

не менее 60 кг И/год

7 млрд. человек содержат ≈ 8 <u>Тд N</u> Для поддержания этого резервуара N ежегодно фиксируется в 20-25 раз больше N 160-200 Тд N


США

Производство:


1 кг говядины требует *14 кг* зерна кукурузы (эквивалент), содержащей ≈ 250 г N

1 кг курятины (бройлер) требует *2,5 кг* зерна кукурузы (эквивалент) или ≈ 50 г N

Глобальное производство азотных удобрений

Фиксация N при производстве удобрений, сжигании ископаемого топлива, выращивании бобовых и культуры риса,

Глобальный баланс азота

Приход (Tg N)		Расход (Tg N)		
Фиксация в атмосфере (электрические разряды)	1-30	Денитрификация	80-720	
Биологическая фиксация	45-330	Речной сток	10-40	
Техногенная фиксация	110-13 0			
Сжигание ископаемого топлива	15-45			
ВСЕГО:	171-53 5	ВСЕГО:	90-760	

Оборачиваемость азота (Тg/год) (Таmm, 1991)

В наземных экосистемах	2000
В океаническом планктоне	4000

Экологические последствия интенсивного вовлечения техногенного азота в круговорот

Потоки азота при сжигании ископаемого топлива Выбросы: NO_x, NH₃

<u>Последствия:</u>

- 1. Фотохимический смог
- 2. Кислотные атмосферные осадки
- 3. Разрушение озонового слоя
- 4. Парниковый эффект

Выбросы NO *

Мобильные источники:

легковые автомобили ≈ 6-7 млн.т/год тяжелые автомобили и авиация ≈ 2-3 млн.т/год

Химическая промышленность (без удобрений) и производство цемента ≈ 2-3 млн.т./год

Сжигание древесины и растительных остатков ≈ 5 млн.т/год

Hитраты (NO_3^-)

- Нитраты (NO₃⁻) не токсичны!
- Нитриты (NO₂-) консерванты против ботулизма
- NO₃⁻ используется для лечения мочекаменной болезни, болезней сердца
- Растворяет почечные камни фосфатной природы.
- Дозировка до 9г $NaNO_3$ или NH_4NO_3 в сутки без каких-либо осложнений.

Физика и химия утечки нитратов

NO₃⁻ - практически не сорбируется в почве

Почвы бореального пояса с pH=4,0-7,5 не сорбируют NO_3^- и другие анионы (CI-, SO_4^{-2} -), их коллоидные частицы заряжены отрицательно

Некоторые тропические сильно выщелоченные почвы с очень кислой реакцией (рН≈3,5) могут поглощать анионы. В этих условиях коллоидные частицы несут положительный заряд

 NH_4^{-1} в противовес NO_3^{-1} хорошо поглощается в почвах и слабо вымывается из них

Корень нитратной проблемы:

Нитратная проблема – *«несвоевременные»* нитраты <u>«Несвоевременные»</u> нитраты так или иначе становятся нитратами <u>«загрязняющими»</u> Подвижность нитратов зависит от физического поведения воды в почве

Метгемоглобинемия или синдром «синего ребенка»

У детей младше 1 года в желудке $NO_3^- \to NO_2^-$

Оксигемоглобин, содержит (Fe⁺⁺⁺) в окисной форме переходит в метгемоглобин (Fe⁺⁺) в закисной форме В результате снижается способность переносить О₂

Случаи метгемоглобинемии в связи с **КОНЦЕНТРАЦИЕЙ NO₃** В **ВОДЕ** (Addiscott et al., 1994)

Источник	Страна	Количеств о случаев	Концентраци я NO _₃ ⁻, мг/л
Comly (1945)	USA	2	388, 619
		1	283-620
Choquette (1982)	USA	1	1200
Busch and Meyer (1982)	USA	1	545
Johnson et al. (1987)	USA	1	665
Ewing and Mayon-White (1951)	UK	2	200* ⁾ , 45(P)
Acheson (1985)	UK	14	>100

Венгрия

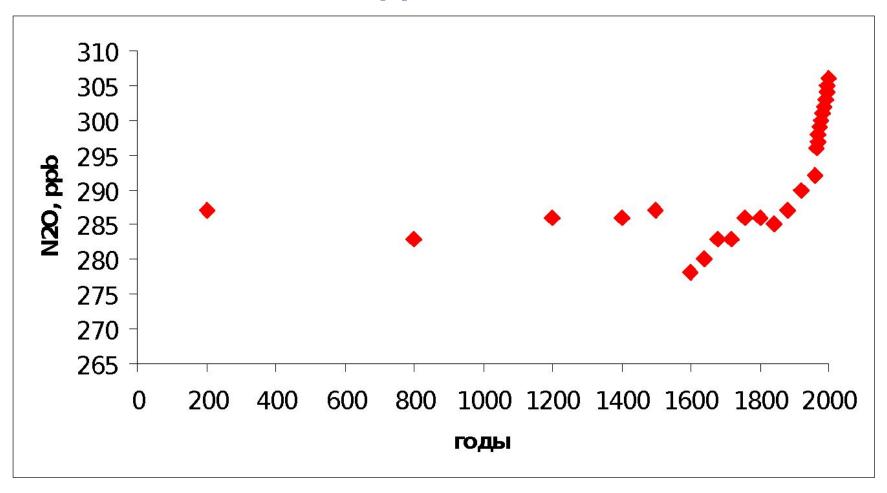
Дания

Deak (1985)

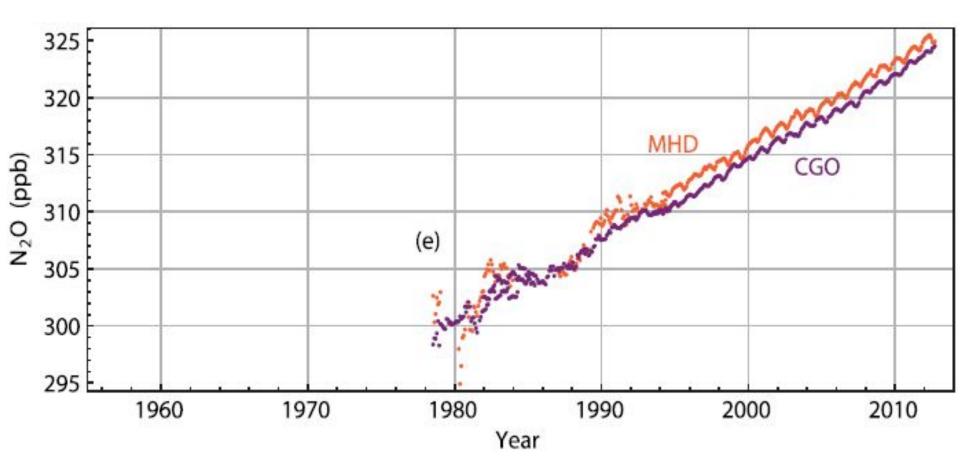
Hye-Knudsen (1985)

Фатальный исход (Р) Вода имела бактериальное загрязнение Все случаи связаны с использованием воды из частных колодцев

45

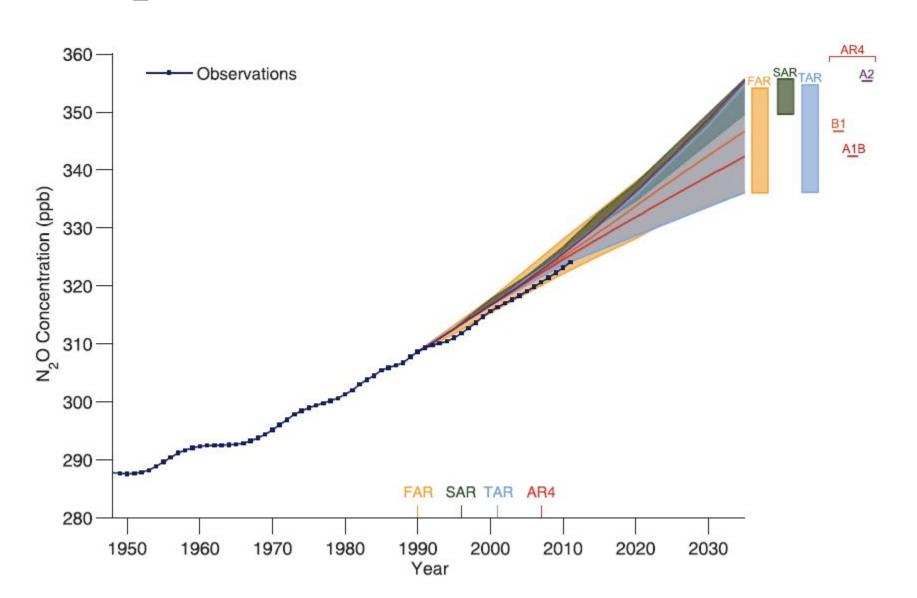

1258

40-100


>100

200(P)

Атмосферная концентрация N₂O за последние 2000 лет



Динамика закиси азота в атмосфере

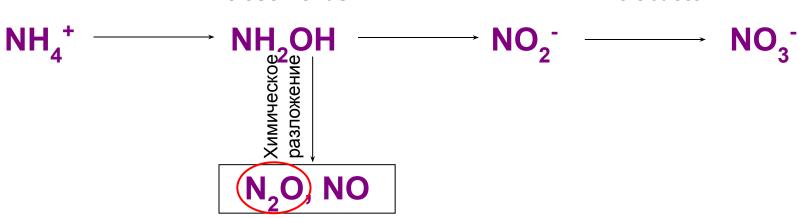
MHD – Mace-Head Northern Hemisphere CGO – Cape Grim Station

Динамика содержание в атмосфере N₂O и прогноз ее содержания

Эмиссия закиси азота на територии России

среднее за год (1990-2010 гг.)

Источники закиси азота	Эмиссия N ₂ O, N, млн. т/год
Сжигание ископаемого топлива	0.30
Лесные пожары	0.07-0.22
Применение азотных удобрений	0.04
Денитрификация в почвах	0.8
Всего	1.21-1.36


Площади почвенного покрова и эмиссия закиси азота

Показатели	Площадь		N-N ₂ O	
Регион	Млн. км ²	%	Млн. т	%
Мир	143.6	100	18.0	100
Россия	16.9	11.7	1.2	6.6

Нитрификация

Nitrosomonas

Nitrobacter

Денитрификация

$$NO_3$$
 $\rightarrow NO_2$ $\rightarrow N_2O$ $\rightarrow N_2$

В стратосфере

$$N_2O \longrightarrow N_2 + O$$
 (90% фотодиссоциация) $N_2O + O \longrightarrow 2$ NO и/или $N_2 + O_2$ ($\Sigma = 10\%$)

Разрушение озона

NO каталитически разрушает озон:

$$NO+O_3 \rightarrow NO_2+O_2$$
 $N_2O+O \rightarrow NO+O_2$
 $Hetto:$
 $O+O_3 \rightarrow 2O_2$

Имеются ли в будущем альтернативы применению удобрений?

- □Увеличение использования бобовых или других N- фиксирующих растений (например Azolla в рисовниках)
- Ограничено

□Внедрение N-фиксирующих генов в большинство культур

- сложная задача, вероятно не скоро
- □ Активация N-фиксации свободноживущих азотфиксаторов
- мало надежды для прогресса

□Усиление ассоциативной азотфиксации большинства культур

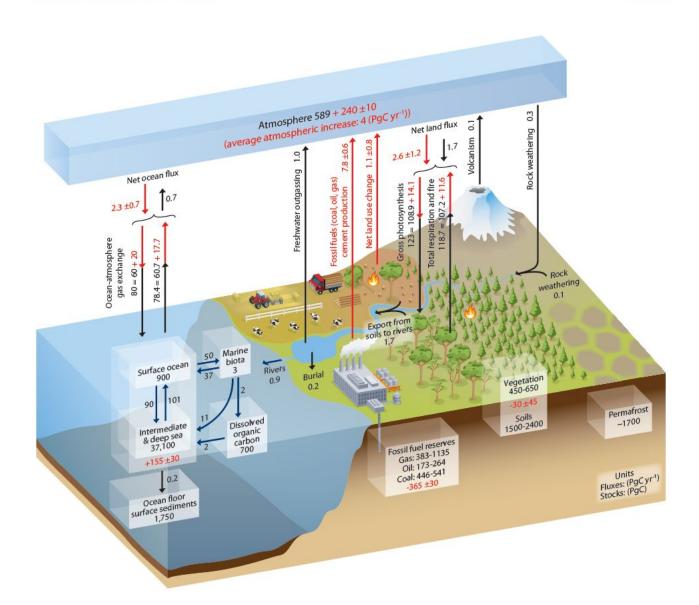
- может быть определенный эффект, но значительный эффект маловероятен

ЗАПАСЫ ОБЩЕГО АЗОТА В ПОЧВАХ РОССИИ

Зоны	Площадь	Запасы N в слое 0-100 см		
	млн. га	т/га	млн. т	
Полярно-Тундровая	181	6.2	1122	
Лесотундровая-Северотаежная	233	7.1	1654	
Среднетаежная	238	4.3	1023 1351	
Южнотаежная	237	5.7		
Лесостепная	126	14.2	1789	
Степная	80	25.9	2064	
Сухостепная	28	19.2	537	
Полупустынная	15	5.2	78	
Горные области	576	0.2	3000	
всего	1714		12618	

НАКОПЛЕНИЕ АЗОТА В РАСТИТЕЛЬНОЙ БИОМАССЕ НА ТЕРРИТОРИИ РОССИИ

	Пло- щадь, млн. га	Ежегодный прирост			
Зона		биома с-са, т/га	N, кг/га	N, аккуму- ляция, млн.т	
Тундра	181	<1.0	5	0.9	
Лесотундровая-	233	2.5-6.0	50	11.6	
северотаежная	238	6.1-8.0	60	14.3	
Среднетаежная	237	8.1-10.	80	19.0	
Южнотаежная	126	0	125	15.8	
Лесостепная	80	10.1-15	80	6.4	
Степная	28	6.0	60	1.7	
Сухостепная	15	4.0	40	0.6	
Полупустынная	576	1.0-2.5	15-30	13	
Горные области					
ВСЕГО	1714			83.3	


Применение минеральных удобрений в мире

Удобрения	Год							
	1965	1970	1975	1980	1985	1990	1995	2000
Всего	47 <u>.0</u>	<u>69,3</u>	91,4	116,7	129,6	137,8	129,7	136,4
	36.6	53.2	69.6	87.6	94.4	99.8	94.4	100.0
Азотные, N	19,1	31,8	<u>44,4</u>	60,8	70,4	77,2	78,4	<u>81,6</u>
	14.9	24.4	33.8	45.6	51.3	55.8	57.0	59.8
Фосфорные,	15,8	21,1	25,6	31,7	33,5	36,1	30,7	32,6
Р ₂ О ₅	12.3	16.2	19.5	23.8	24.4	26.1	22.3	23.9
Калийные,	12,1	16,4	21,4	24,2	25,7	24,7	20,7	22,2
К ₂ О	9.4	12.6	16.3	18.2	18.7	17.9	15.1	16.3

Примечание: Над чертой - млн. тонн; Под чертой - кг/га пашни.

Основные потоки глобального биогеохимического цикла азота

	Интервал величин (Tg N)				
ПОТОКИ					
Фиксация в атмосфере (молнии)	1-30				
Биологическая фиксация (всего)	45-330				
в т.ч.: наземная	44-200				
в океане	1-130				
Техногенная фиксация	120				
Сжигание ископаемого топлива	15-45				
Сжигание биомассы	10-200				
Биогенное высвобождение NO _x	20-230				
Денитрификация (вся)	80-720				
в т.ч.: наземная	40-390				
в океане	40-330				
Улетучивание NH ₃	30-250				
Атмосферные выпадения (всего)	110-360				
в т.ч.: NH ₃ /NH ₄ ⁺	80-240				
NO _x	30-120				
Органический N (выпадения)	10-100				
Речной сток	10-40				

references). Fossil fuel reserves are from GEA (2006) and are consistent with numbers used by IPCC WGIII for future scenarios. The sediment storage is a sum of 150 PgC of the organic carbon in the mixed layer (Emerson and Hedges, 1988) and 1600 PgC of the deep-sea CaCO₃ sediments available to neutralize fossil fuel CO₂ (Archer et al., 1998). Red arrows and numbers indicate annual 'anthropogenic' fluxes averaged over the 2000–2009 time period. These fluxes are a perturbation of the carbon cycle during Industrial Era post 1750. These fluxes (red arrows) are: Fossil fuel and cement emissions of CO₂ (Section 6.3.1), Net land use change (Section 6.3.2), and the Average atmospheric increase of CO₂ in the atmosphere, also called 'CO₂ growth rate' (Section 6.3). The uptake of anthropogenic CO₂ by the ocean and by terrestrial ecosystems, often called 'carbon sinks' are the red arrows part of Net land flux and Net ocean flux. Red numbers in the reservoir sense denote cumulative changes of anthropogenic carbon over the Industrial Period 1750–2011 (column 2 in Table 6.1). By convention, a positive cumulative change means that a reservoir has gained carbon since 1750. The cumulative change of anthropogenic carbon in the terrestrial reservoir is the sum of carbon cumulatively lost through land use change and carbon accumulated since 1750 in other ecosystems (Table 6.1). Note that the mass balance of the two ocean carbon stocks Surface ocean and Intermediate and deep ocean includes a yearly accumulation of anthropogenic carbon (not shown). Uncertainties are reported as 90% confidence intervals. Emission estimates and land and ocean sinks (in red) are from Table 6.1 in Section 6.3. The change of gross terrestrial fluxes (red arrows of ocean atmosphere

conversion factor of 2.12 PgC per ppm (Prather et al., 2012).

gas exchange) have been estimated from the difference in atmospheric partial pressure of CO₂ since 1750 (Sarmiento and Gruber, 2006). Individual gross fluxes and their changes since the beginning of the Industrial Era have typical uncertainties of more than 20%, while their differences (Net land flux and Net ocean flux in the figure) are determined from independent measurements with a much higher accuracy (see Section 6.3). Therefore, to achieve an overall balance, the values of the more uncertain gross fluxes have been adjusted so that their difference matches the Net land flux and Net ocean flux estimates. Fluxes from volcanic eruptions, rock weathering (silicates and carbonates weathering reactions resulting into a small uptake of atmospheric CO₂), export of carbon from soils to rivers, burial of carbon in freshwater lakes and reservoirs and transport of carbon by rivers to the ocean are all assumed to be pre-industrial fluxes, that is, unchanged during 1750–2011. Some recent studies (Section 6.3) indicate that this assumption is likely not verified, but global estimates of the Industrial Era perturbation of all these fluxes was not available from peer-reviewed literature. The atmospheric inventories have been calculated using a

Figure 6.1 Simplified schematic of the global carbon cycle. Numbers represent reservoir mass, also called 'carbon stocks' in PgC (1 PgC = 10¹⁵ gC) and annual carbon exchange fluxes (in PgC vr⁻¹). Black numbers and arrows indicate reservoir mass and exchange fluxes estimated for the time prior to the Industrial Era, about 1750 (see Section 6.1.1.1 for

6.1.2.1 Carbon Dioxide and the Global Carbon Cycle

Since the beginning of the Industrial Era, humans have been producing energy by burning of fossil fuels (coal, oil and gas), a process that

The second major source of anthropogenic CO_2 emissions to the atmosphere is caused by changes in land use (mainly deforestation), which causes globally a net reduction in land carbon storage, although recovery from past land use change can cause a net gain in land

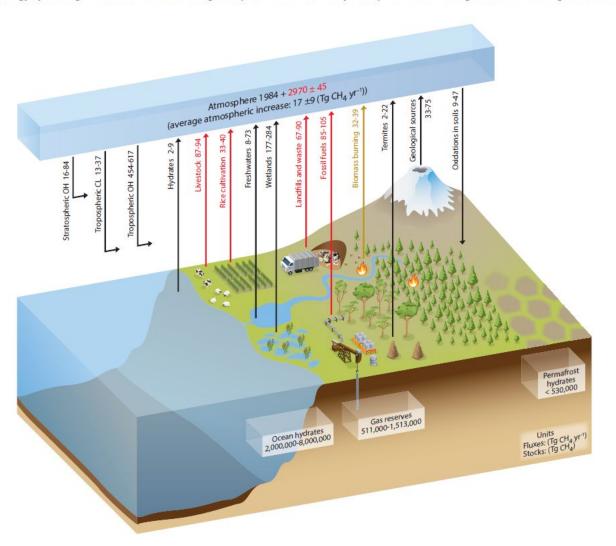
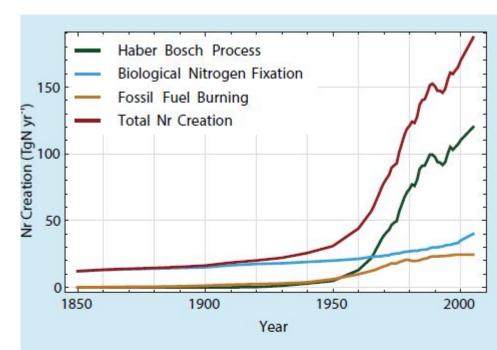


Figure 6.2 | Schematic of the global cycle of CH_4 . Numbers represent annual fluxes in $Tg(CH_4)$ yr⁻¹ estimated for the time period 2000–2009 and CH_4 reservoirs in Tg (CH_4): the atmosphere and three geological reservoirs (hydrates on land and in the ocean floor and gas reserves) (see Section 6.3.3). Black arrows denote 'natural' fluxes, that is, fluxes that are not directly caused by human activities since 1750, red arrows anthropogenic fluxes, and the light brown arrow denotes a combined natural + anthropogenic flux. Note that human activities (e.g., land use) may have modified indirectly the global magnitude of the natural fluxes (Section 6.3.3). Ranges represent minimum and maximum values from cited references as given in Table 6.8 in Section 6.3.3. Gas reserves are from GEA (2006) and are consistent with numbers used by IPCC WG III for future scenarios. Hydrate reservoir sizes are from Archer et al. (2007). The atmospheric inventories have been calculated using a conversion factor of 2.7476 TgCH₄ per ppb (Prather et al., 2012). The assumed preindustrial annual mean globally averaged CH_4 concentration was 722 \pm 25 ppb taking the average of the Antarctic Law Dome ice core observations (MacFarling-Meure et al., 2006) and the measurements from the GRIP ice core in Greenland (Blunier et al., 1995; see also Table 2.1). The atmospheric inventory in the year 2011 is based on an annual globally averaged CH_4 concentration of 1803 \pm 4 ppb in the year 2011 (see Table 2.1). It is the sum of the atmospheric increase between 1750 and 2011 (in red) and of the pre-industrial inventory (in black). The average atmospheric increase each year, also called growth rate, is based on a measured concentration increase of 2.2 ppb yr⁻¹ during the time period 2000–2009 (Dlugokencky et al., 2011).

6.1.3 Connections Between Carbon and the Nitrogen and Oxygen Cycles

6.1.3.1 Global Nitrogen Cycle Including Nitrous Oxide

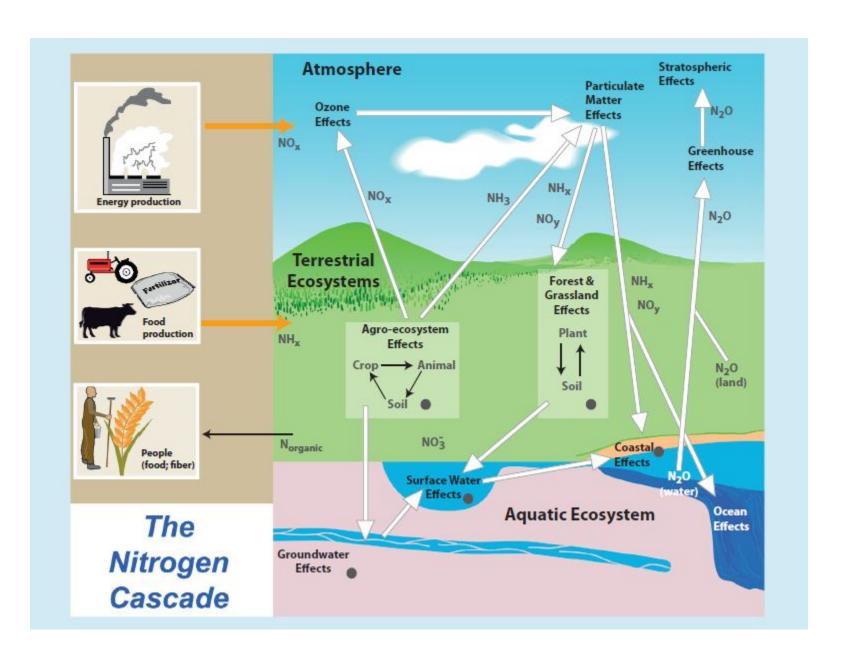
The biogeochemical cycles of nitrogen and carbon are tightly coupled with each other owing to the metabolic needs of organisms for these two elements. Changes in the availability of one element will influence not only biological productivity but also availability and requirements for the other element (Gruber and Galloway, 2008) and in the longer term, the structure and functioning of ecosystems as well.


Before the Industrial Era, the creation of reactive nitrogen Nr (all nitrogen species other than N2) from non-reactive atmospheric N2 occurred primarily through two natural processes: lightning and biological nitrogen fixation (BNF). BNF is a set of reactions that convert N2 to ammonia in a microbially mediated process. This input of Nr to the land and ocean biosphere was in balance with the loss of Nr though denitrification, a process that returns N₂ back to the atmosphere (Ayres et al., 1994). This equilibrium has been broken since the beginning of the Industrial Era. Nr is produced by human activities and delivered to ecosystems. During the last decades, the production of Nr by humans has been much greater than the natural production (Figure 6.4a; Section 6.3.4.3). There are three main anthropogenic sources of Nr: (1) the Haber-Bosch industrial process, used to make NH₃ from N₂, for nitrogen fertilisers and as a feedstock for some industries; (2) the cultivation of legumes and other crops, which increases BNF; and (3) the combustion of fossil fuels, which converts atmospheric N2 and fossil fuel nitrogen into nitrogen oxides (NO_x) emitted to the atmosphere and re-deposited at the surface (Figure 6.4a). In addition, there is a small flux from the mobilization of sequestered Nr from nitrogen-rich sedimentary rocks (Morford et al., 2011) (not shown in Figure 6.4a).

The amount of anthropogenic Nr converted back to non-reactive N₂ by denitrification is much smaller than the amount of Nr produced each year, that is, about 30 to 60% of the total Nr production, with a large uncertainty (Galloway et al., 2004; Canfield et al., 2010; Bouwman et al., 2013). What is more certain is the amount of N₂O emitted to the atmosphere. Anthropogenic sources of N₂O are about the same size as natural terrestrial sources (see Section 6.3.4 and Table 6.9 for the global N₂O budget). In addition, emissions of Nr to the atmosphere, as NH₃ and NO_x, are caused by agriculture and fossil fuel combustion. A portion of the emitted NH₃ and NO₄ is deposited over the continents, while the rest gets transported by winds and deposited over the oceans. This atmospheric deposition flux of Nr over the oceans is comparable to the flux going from soils to rivers and delivered to the coastal ocean (Galloway et al., 2004; Suntharalingam et al., 2012). The increase of Nr creation during the Industrial Era, the connections among its impacts, including on climate and the connections with the carbon cycle are presented in Box 6.2.

For the global ocean, the best BNF estimate is 160 TgN yr⁻¹, which is roughly the midpoint of the minimum estimate of 140 TgN yr⁻¹ of Deutsch et al. (2007) and the maximum estimate of 177 TgN yr⁻¹ (Groszkopf et al., 2012). The probability that this estimate will need an upward revision in the near future is high because several additional processes are not yet considered (Voss et al., 2013).

The three most relevant questions regarding the anthropogenic perturbation of the nitrogen cycle with respect to global change are: (1) What are the interactions with the carbon cycle, and the effects on carbon sinks (see Sections 6.3.2.6.5 and 6.4.2.1), (2) What are the effects of increased Nr on the radiative forcing of nitrate aerosols (Chapter 7, 7.3.2) and tropospheric ozone (Chapters 8), (3) What are the impacts of the excess of Nr on humans and ecosystems (health, biodiversity, eutrophication, not treated in this report, but see, for example, EPA, 2011b; Sutton et al., 2011).


Essentially all of the Nr formed by human activity is spread into the environment, either at the point of creation (i.e., fossil fuel combustion) or after it is used in food production and in industry. Once in the environment, Nr has a number of negative impacts if not converted back into N_2 . In addition to its contributions to climate change and stratospheric ozone depletion, Nr contributes to the formation of smog; increases the haziness of the troposphere; contributes to the acidification of soils and freshwaters; and increases the productivity in forests, grasslands, open and coastal waters and open ocean, which can lead to eutrophication and reduction

Box 6.2, Figure 1 Anthropogenic reactive nitrogen (Nr) creation rates (in TgN yr⁻¹) from fossil fuel burning (orange line), cultivation-induced biological nitrogen fixation (blue line), Haber–Bosch process (green line) and total creation (red line). Source: Galloway et al. (2003), Galloway et al. (2008). Note that updates are given in Table 6.9. The only one with significant changes in the more recent literature is cultivation-induced BNF) which Herridge et al. (2008) estimated to be 60 TgN yr⁻¹. The data are only reported since 1850, as no published estimate is available since 1750.

in biodiversity in terrestrial and aquatic ecosystems. In addition, Nr-induced increases in nitrogen oxides, aerosols, tropospheric ozone, and nitrates in drinking water have negative impacts on human health (Galloway et al., 2008; Davidson et al., 2012). Once the nitrogen atoms become reactive (e.g., NH_3 , NO_x), any given Nr atom can contribute to all of the impacts noted above in sequence. This is called the nitrogen cascade (Galloway et al., 2003; Box 6.2, Figure 2). The nitrogen cascade is the sequential transfer of the same Nr atom through the atmosphere, terrestrial ecosystems, freshwater ecosystems and marine ecosystems that results in multiple effects in each reservoir. Because of the nitrogen cascade, the creation of any molecule of Nr from N_2 , at any location, has the potential to affect climate, either directly or indirectly, as explained in this box N_2 .

The most important processes causing direct links between anthropogenic Nr and climate change include (Erisman et al., 2011): (1) N_2O formation during industrial processes (e.g., fertiliser production), combustion, or microbial conversion of substrate containing nitrogen—notably after fertiliser and manure application to soils. N_2O is a strong greenhouse gas (GHG), (2) emission of anthropogenic NO_x leading to (a) formation of tropospheric O_3 , (which is the third most important GHG), (b) a decrease of CH_4 and (c) the formation of nitrate aerosols. Aerosol formation affects radiative forcing, as nitrogen-containing aerosols have a direct cooling effect in addition to an indirect cooling effect through cloud formation and (3) NH_3 emission to the atmosphere which contributes to aerosol formation. The first process has a warming effect. The second has both a warming (as a GHG) and a cooling (through the formation of the OH radical in the troposphere which reacts with CH_4 , and through aerosol formation) effect. The net effect of all three NO_x -related contributions is cooling. The third process has a cooling effect.

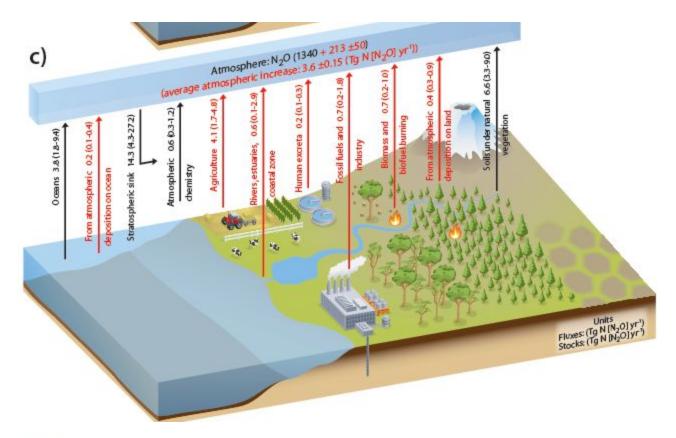
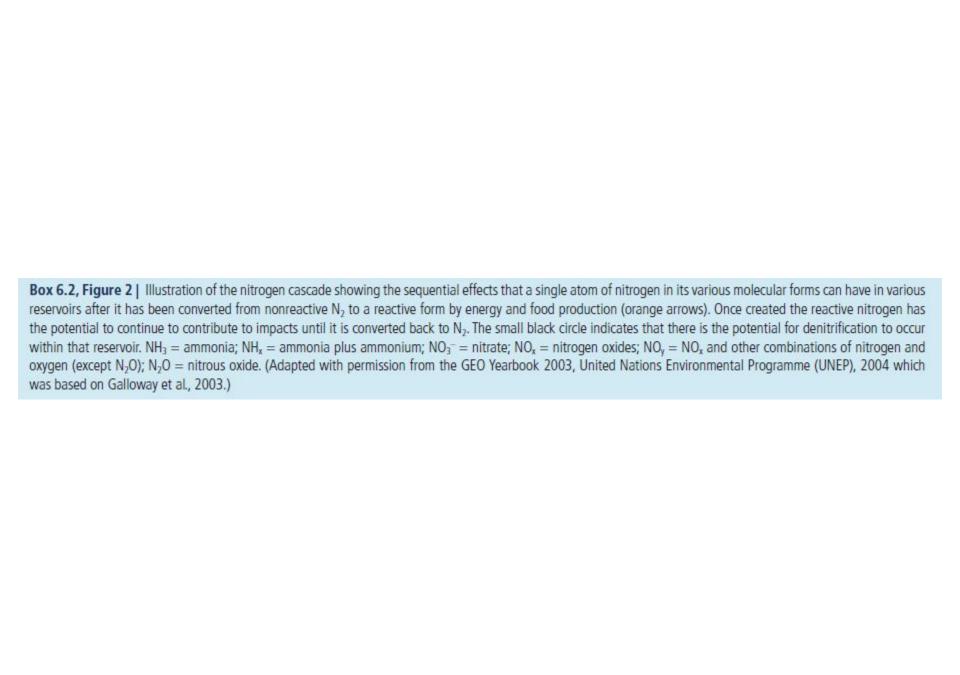
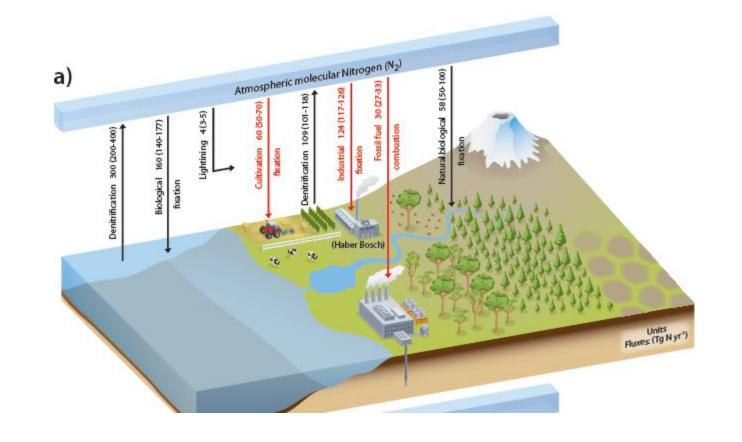
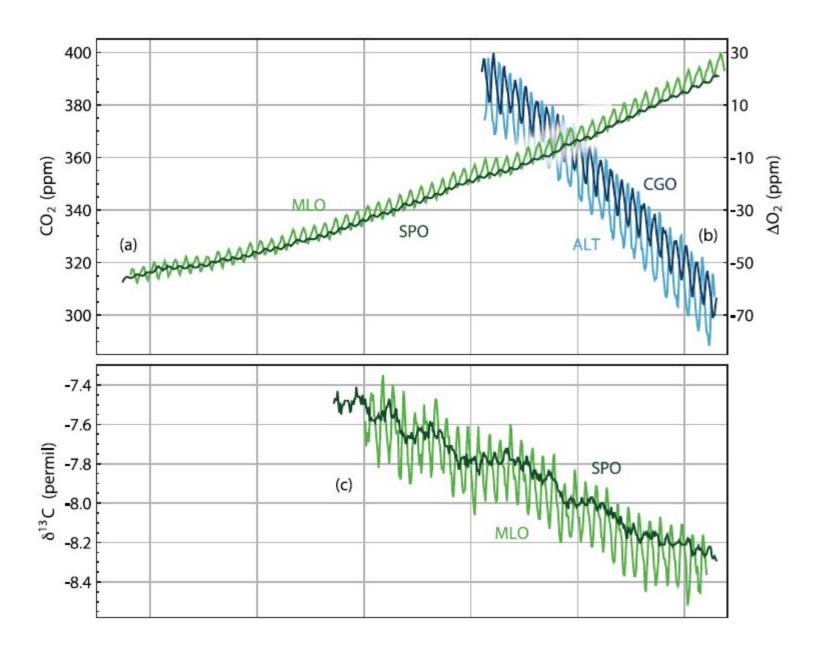
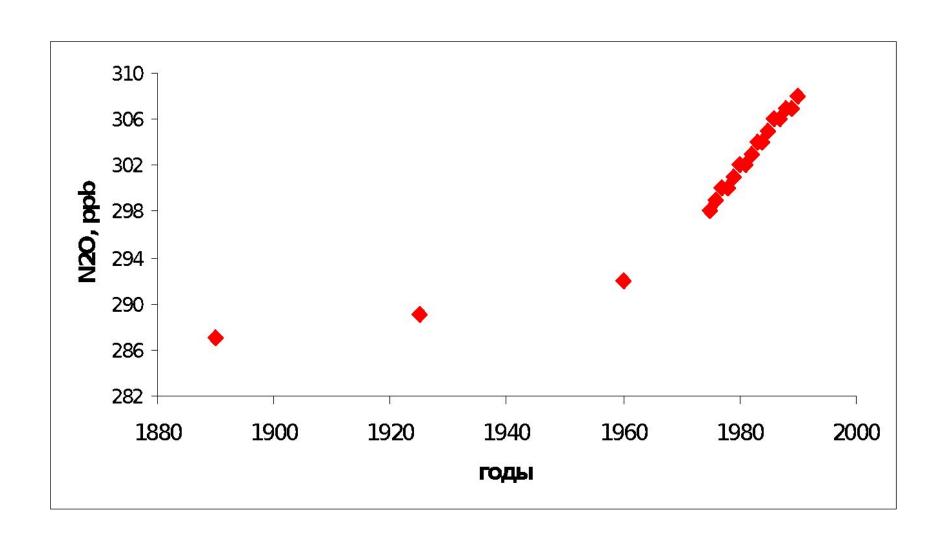
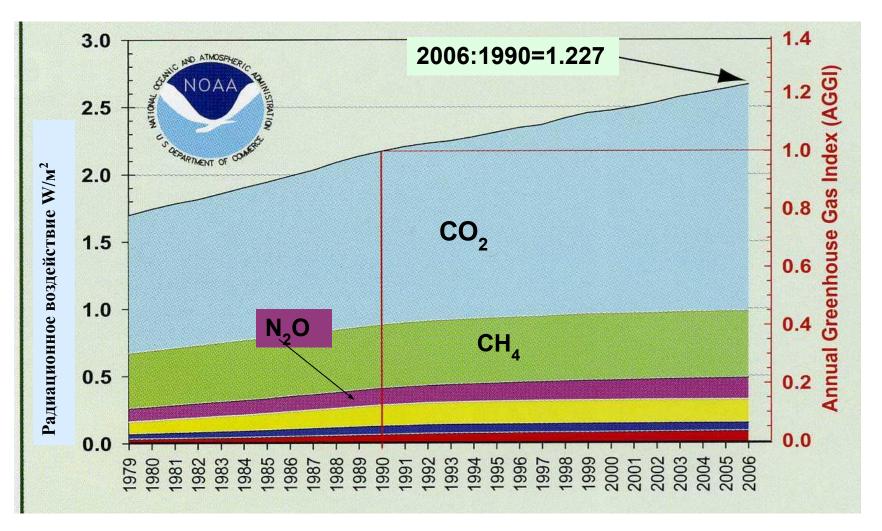





Figure 6.4 | Schematic of the global nitrogen cycle. (a) The natural and anthropogenic processes that create reactive nitrogen and the corresponding rates of denitrification that convert reactive nitrogen back to N_2 . (b) The flows of the reactive nitrogen species NO_y and NH_x . (c) The stratospheric sink of N_2O is the sum of losses via photolysis and reaction with O(1D) (oxygen radical in the 1D excited state; Table 6.9). The global magnitude of this sink is adjusted here in order to be equal to the difference between the total sources and the observed growth rate. This value falls within literature estimates (Volk et al., 1997). The atmospheric inventories have been calculated using a conversion factor of 4.79 TgN (N_2O) per ppb (Prather et al., 2012).



Box 6.2 | Nitrogen Cycle and Climate-Carbon Cycle Feedbacks

Human creation of reactive nitrogen by the Haber–Bosch process (see Sections 6.1.3 and 6.3.4), fossil fuel combustion and agricultural biological nitrogen fixation (BNF) dominate Nr creation relative to biological nitrogen fixation in natural terrestrial ecosystems. This dominance impacts on the radiation balance of the Earth (covered by the IPCC; see, e.g., Chapters 7 and 8), and affects human health and ecosystem health as well (EPA, 2011b; Sutton et al., 2011).


The Nr creation from 1850 to 2005 is shown in Box 6.2 (Figure 1). After mid-1970s, human production of Nr exceeded natural production. During the 2000s food production (mineral fertilisers, legumes) accounts for three-quarters of Nr created by humans, with fossil fuel combustion and industrial uses accounting equally for the remainder (Galloway et al., 2008; Canfield et al., 2010; Sutton et al., 2011).

Атмосферная концентрация N₂O за последние 120 лет

Изменение радиационного воздействия долгоживущих парниковых газов в атмосфере

(1990 год принят за единицу)

(цитировано по WMO, 2008)