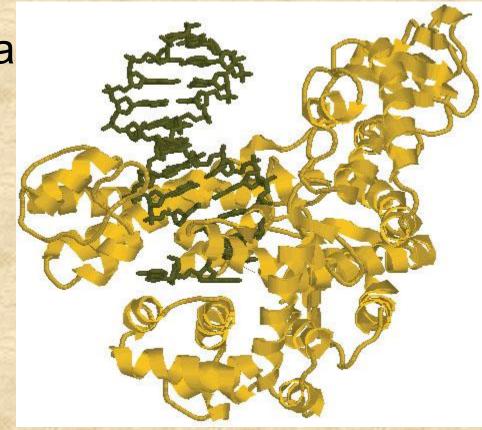


вопросы лекции:

- 1. Определение понятия метаболизма
- 2. Пути поступления веществ в клетку
- 3. Источники питания бактерий
- 4. Источники получения энергии
 - 5. Типы метаболизмов.

Метаболизм - это

совокупность всех химических превращений, происходящих в клетке.


Метаболизм состоит из двух противоположных групп реакций:

Анаболизм – конструктивный метаболизм, биосинтез

Катаболизм – энергетический метаболизм, реакции расщепления

Катаболизм и анаболизм протекают одновременно, многие реакции и промежуточные продукты являются для них общими.

Все процессы обмена веществ катализируются ферментами

МИКРООРГАНИЗМЫ – осуществляют внеклеточное пищеварение, т.е. высокомолекулярные соединения сначала расщепляются ферментами, выделяемыми клетками, а затем поглощаются клеткой. Такие ферменты называются экзоферментами.

Микроорганизмы очень разнообразны по своим пищевым потребностям, способны существовать на самых разных субстратах. Но если какой-то субстрат является для одного микроорганизма источником питания, то для другого этот субстрат может оказаться ядом.

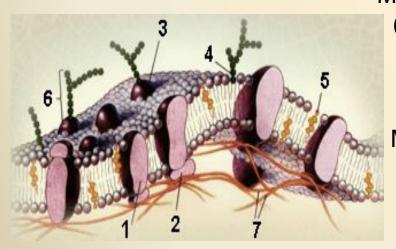
6 классов ферментов бактерий:

Оксидоредуктазы

Трансферазы

Гидролазы: протеолитические

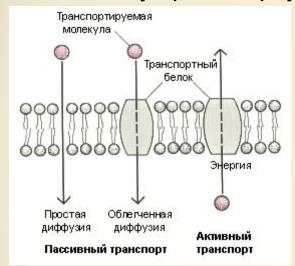
гидролитические


эстеразы

Лиазы

Изомеразы

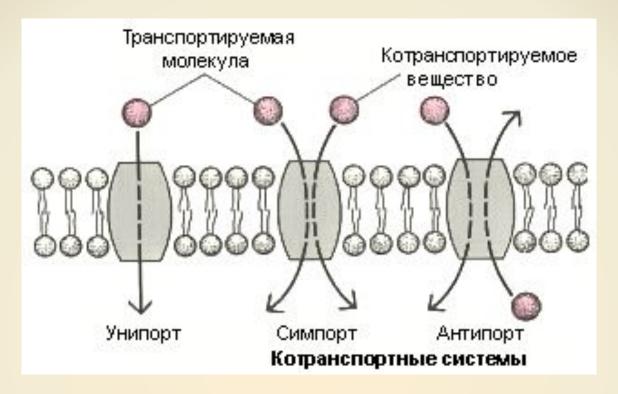
лигазы


Все клетки отделены от окружающей среды плазматической мембраной. Клеточные мембраны не являются непроницаемыми барьерами. Клетки способны регулировать количество и тип проходящих через мембраны веществ, а часто и направление движения.

Мембраны - это липопротеиновые структуры (липид + белок). К некоторым липидным и белковым молекулам на внешних поверхностях присоединены углеводные компоненты. Липиды образуют бислой. Мембранные белки выполняют различные функции: транспорт веществ, ферментативная активность, перенос электронов, преобразование энергии, рецепторная активность.

Типы проникновения веществ в клетку через мембраны.

Молекулы проходят через мембраны благодаря трём различным процессам: простой диффузии, облегчённой диффузии, активному транспорту.



Облегчённая диффузия обусловлена градиентом концентрации, и молекулы движутся соответственно этому градиенту. Простая диффузия - определяется только разностью концентраций вещества по обеим сторонам мембраны (градиентом концентрации).

Большинство веществ, необходимых клеткам, переносится через мембрану с помощью погружённых в неё транспортных белков (белков-переносчиков).

Активный транспорт

- это перенос растворённых веществ против градиента концентрации

Некоторые транспортные белки переносят одно растворённое вещество через мембрану (унипорт). Другие функционируют как котранспортные системы, в которых перенос одного растворённого вещества зависит от одновременного или последовательного переноса второго вещества. Второе вещество может транспортироваться в том же направлении (симпорт) либо в противоположном (антипорт).

Источники питания бактерий

Органические соединения (углеводы, белки, жиры, орг-ие кислоты, спирты и т.д.) – гетеротрофы

Неорганические (CO2, H2O, H2S, NH3, CH4 и т.д.) - автотрофы

Химический состав клетки:

Вода - 80-90% общей массы

Углерод – 50 % массы сухого вещества

Кислород **- 20%**

A30T - 14

Водород - 8

Фосфор - 3

Cepa **- 1**

Калий – **1**

Натрий - 1

Кальций **- 0,5**

Магний - 0,5

Хлор **- 0,5**

Железо **- 0,2**

Источники получения энергии

- □ Процессы брожения
- □ Аэробное дыхание
- □ Анаэробное дыхание
- □ Фотосинтез: аноксигенный

оксигенный

БРОЖЕНИЕ

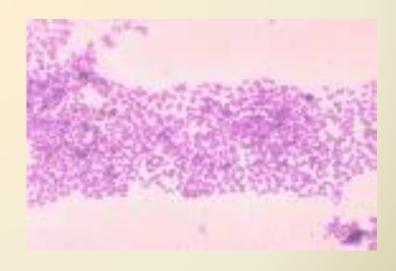
Способность бактерий осуществлять окислительно-восстановительные реакции в анаэробных условиях.

Все процессы брожения осуществляются только в анаэробных условиях.

Конечными продуктами брожения является образование низкомолекулярных органических соединений.

При окислении одной молекулы глюкозы образуется max 2 молекулы ATФ

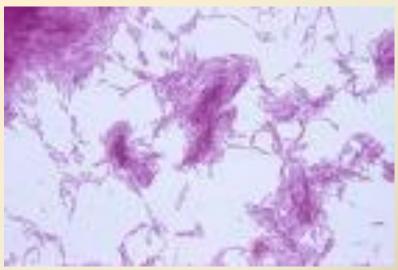
Все процессы брожения имеют биологическую природу.



Аэробное дыхание

Процесс, при котором конечным акцептором окислительно-восстановительных реакций бактерий является молекулярный кислород.

Такие реакции катализируются ферментами оксидазами.
Azotobacter, Micrococcus



Анаэробное дыхание

Это процесс, при котором конечным акцептором электрона являются органические (фумараты) или неорганические (нитраты, нитриты, сульфаты, карбонаты) соединения. Corynebacterium, Mycobacterium

Фотосинтез

Оксигенный Аноксигенный

донором электронов является


• H2O H2S

• CH4

• NH3

Оксигенный фотосинтез

Цианобактерии Содержат пигмент хлорофилл A

Аноксигенный фотосинтез

Пурпурные серные бактериохлорофилл Пурпурные несерные

Зеленые бактериовиридин


Галофитные бактериородопсин

Для нормального метаболизма бактерии должны использовать субстрат в качестве донора электронов:

Использование органического субстрата осуществляют органотрофы.

Неорганического - литотрофы

Источник энергии	Донор электронов	Источник С	Тип метаболизма
хемо	лито	авто	хемолитоавтотрофия
		гетеро	хемолитогетеротрофия
	органо	авто	хемоорганоавтотрофия
		гетеро	хемоорганогетеротрофия
фото	ЛИТО	авто	фотолитоавтотрофия
		гетеро	фотолитогетеротрофия
	органо	авто	фотоорганоавтотрофия
		гетеро	фотоорганогетеротрофия

