
ЛЕКЦИЯ Тема:

«Нервная система – система управления (регуляции) функций в организме.

Нервные центры. Возрастные особенности»

План

- 1. Понятие о нервных центрах. Классификация н.ц.
- 2. Возбуждение в ЦНС.
- Торможение в ЦНС.
- 4. Координация рефлексов. Основные принципы.
- Возрастные особенности.

•Рефлекторный принцип регуляции функций (рефлекторная теория)

Узловой момент развития рефлекторной теории – классический труд И.М. Сеченова (1863) «Рефлексы головного мозга».

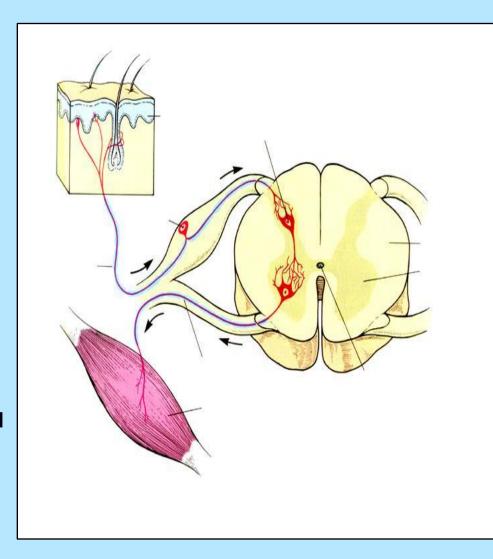
Основной тезис: Все виды сознательной и бессознательной жизни человека представляют собой рефлекторные реакции.

•Рефлекс, рефлекторная дуга, рецептивное поле

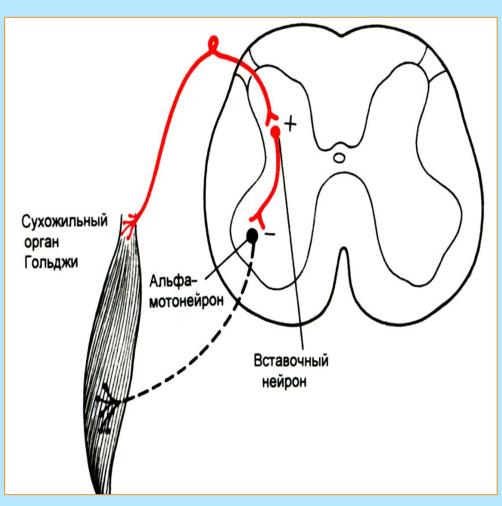
- **Рефлекс** универсальная форма взаимодействия организма и среды, реакция организма, возникающая на раздражение рецепторов и осуществляемая с участием нервной системы.
- В естественных условиях рефлекторная реакция происходит при пороговом, надпороговом раздражении входа рефлекторной дуги рецептивного поля данного рефлекса.
- Рецептивное поле определенный участок воспринимающей чувствительной поверхности организма с расположенными здесь рецепторными клетками, раздражение которых инициирует, запускает рефлекторную реакцию.
- Рецептивные поля разных рефлексов имеют разную локализацию.
- Рецепторы специализированы для оптимального восприятия адекватных раздражителей.
- Структурная основа рефлекса рефлекторная дуга.

•Рефлекторная дуга

Рефлекторная дуга –


последовательно соединенная цепочка нейронов, обеспечивающая осуществление реакции (ответа) на раздражение.

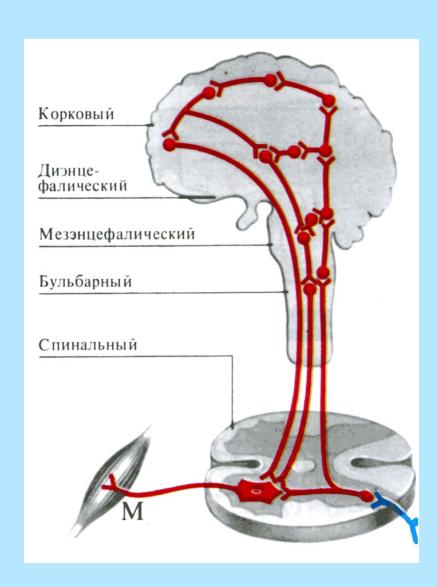
Рефлекторная дуга состоит из:


- Афферентного (А);
- Центрального (Ц,В);
- Эфферентного (Э) звеньев.

Звенья связаны синапсами (с).

- В зависимости от *сложности* структуры рефлекторной дуги различают рефлексы:
- Моносинаптические (А→с ¦Э);
- Полисинаптические (А→с ¦В→с ¦Э).

•Рефлекторное кольцо


- Обратная связь (обратная афферентация) структурная основа рефлекторного кольца: воздействие работающего органа на состояние своего центра.
- □ Петля обратной связи информация о реализованном результате рефлекторной реакции в нервный центр, выдающий исполнительные команды.

<u>Значение:</u>

 Вносит <u>постоянные</u> поправки в рефлекторный акт.

•Классификация рефлексов

- □ Безусловные и условные (по способу образования рефлекторной дуги: генетически запрограммирована или сформирована в онтогенезе);
- □ Спинальные, бульбарные, мезэнцефальные, кортикальные (по расположению основных нейронов, без которых рефлекс не реализуется);
- ☑ Интерорецептивные, экстерорецептивные (по локализации рецепторов);
- □ Защитные, пищевые, половые (по биологическому значению рефлексов);
- □ Соматические, вегетативные (по участию отдела нервной системы). Если эффекторами являются внутренние органы, говорят о вегетативных рефлексах, если скелетные мышцы о соматических рефлексах);
- □ Сердечные, сосудистые, слюноотделительные (по конечному результату).

•Нервный центр: определение

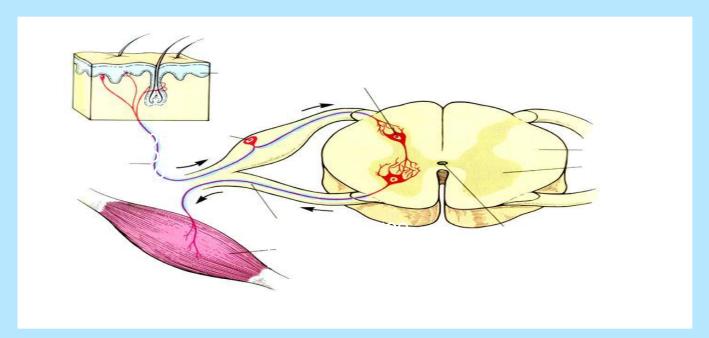
- Рефлекторная деятельность организма во многом определяется общими свойствами нервных центров.
 - **Нервный центр –** «ансамбль» нейронов, согласованно включающихся в регуляцию определенной функции или в осуществление рефлекторного акта.
- Нейроны ЦНС (нервных центров):
 - Преимущественно, вставочные (интернейроны);
 - Мультиполярные (дендритное дерево! шипики);
- Разнообразные по химизму: разные нейроны секретируют различные медиаторы (АХ, ГАМК, глицин, эндорфины, дофамин, серотонин, нейропептиды и др.)

•Классификация нервных центров

- 1. Морфологический критерий (локализация в отделах ЦНС):
- Спинальные центры (в спинном мозге);
- Бульбарные (в продолговатом мозге);
- Мезэнцефальные (в среднем мозге);
- Диэнцефальные (в промежуточном мозге);
- Таламические (в зрительных буграх);
- Корковые и подкорковые.

- 2. Функциональный критерий:
- <u>А. Органы регуляции</u>:
- Сосудодвигательный центр;
- Дыхательный;
- Сердечный и др.
- **В.** Афферентный приток:
 - Зрительный;
 - Слуховой и т.п.
- С. <u>Мотивационное</u> <u>состояние:</u>
- Центр голода;
- 🔲 🏻 Жажды и т.п.
- <u>D. Целостные</u>:
 - Половые центры и т.д.

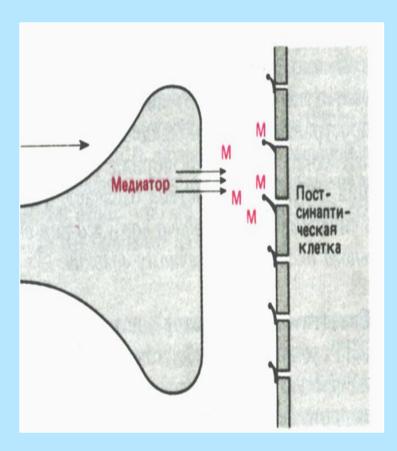
•Нервные центры


В основе нервной деятельности лежат активные и противоположные по своим функциональным свойствам процессы:

- Возбуждение;
- Торможение.

Функциональное значение торможения:

- Координирует функции, т.е. направляет возбуждение по определенным путям, к определенным нервным центрам, выключая те пути и нейроны, активность которых в данный момент не нужна для конкретного приспособительного результата.
- Выполняет *охранительную* (защитную) функцию, предохраняя нейроны от перевозбуждения и истощения при действии сверхсильных и длительных раздражителей.


•Особенности распространения возбуждения в ЦНС: **односторонность**

В ЦНС, внутри рефлекторной дуги и нейронных цепей возбуждение идет, как правило, в одном направлении: от афферентного нейрона к эфферентному.

Это обусловлено особенностями структуры химического синапса: медиатор выделяется только пресинаптической частью.

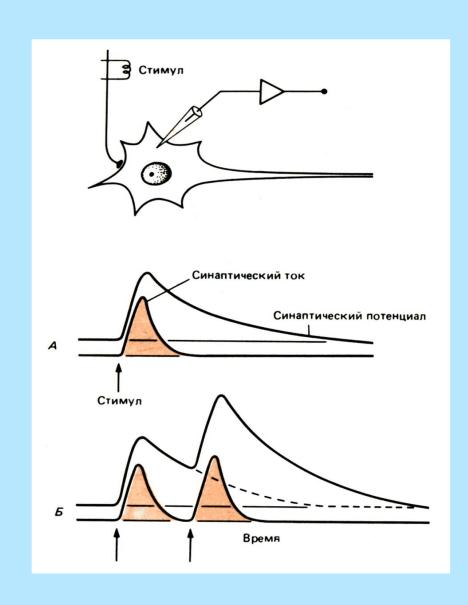
•Особенности распространения возбуждения в ЦНС: замедленное проведение

- Известно, что возбуждение по нервным волокнам (периферия) проводится быстро, а в ЦНС— относительно медленно (синапсы!).
- Время, в течение которого возбуждение проводится в ЦНС с афферентного на эфферентный путь –центральное время рефлекса (3 мс).
- Чем *сложнее* рефлекторная реакция, тем *больше* время ее рефлекса.
- Удетей время центральной задержки больше,
- оно увеличивается также при различных воздействиях на организм человека.

 При утомлении водителя оно может превышать 1000 мс, что приводит в опасных ситуациях к замедленным реакциям и дорожным авариям.

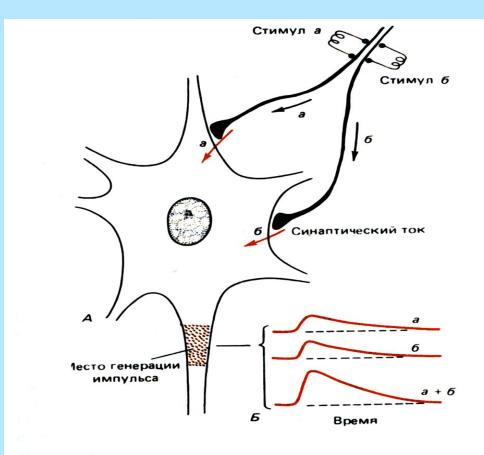
•Особенности распространения возбуждения в ЦНС: **суммация**

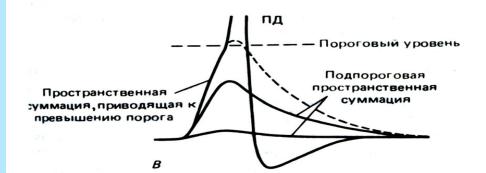
Это свойство впервые описал И.М. Сеченов (1863):

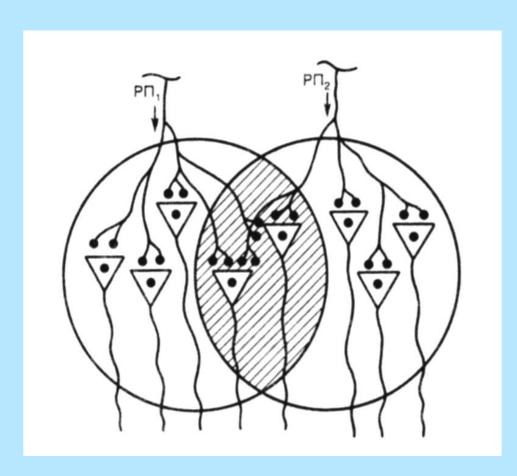

При действии ряда подпороговых стимулов на рецептор или афферентный путь возникает ответная реакция.

Виды суммации:

- 1. Последовательная (временная);
- 2. Пространственная.
- Один подпороговый афферентный стимул не вызывает ответной реакции, а создает в ЦНС местное возбуждение (локальный ответ) –недостаточное для ПД количество медиатора).

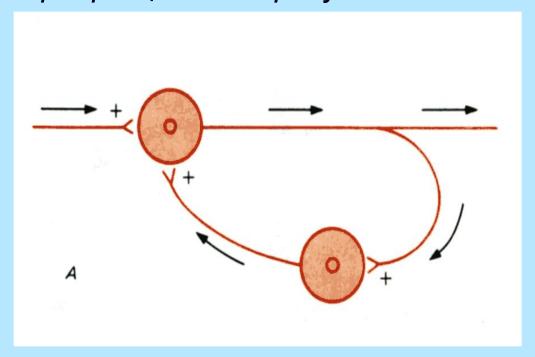

•Особенности распространения возбуждения в ЦНС: **временная суммация**


- А. В ответ на одиночный раздражитель возникает синаптический ток (затененная область) и синаптический потенциал,
- Б. Если вскоре после одного постсинаптического потенциала возникает другой, то он *складывается* с ним.
- Это явление называется временной суммацией.
- Чем короче при этом будет интервал между двумя последовательными синаптическими потенциалами, тем выше будет амплитуда суммарного потенциала.


•Особенности распространения возбуждения в ЦНС: **пространственная суммация**

- Пространственная суммания: пва или
 - суммация: <u>два</u>или <u>несколько</u> подпороговых импульсов приходят в ЦНС по *разным* афферентным путям и <u>вызывают</u> ответную рефлекторную реакцию.
 - Для возникновения импульса в нейроне необходимо, чтобы начальный сегмент аксона, обладающий низким порогом возбуждения, был деполяризован до критического уровня

•Особенности распространения возбуждения в ЦНС: окклюзия


Феномен окклюзии (по Шеррингтону). $P\Pi_1$, $P\Pi_2$ – **р**ецептивные **п**оля.

Феномен **окклюзии** (<лат оссlusus запертый) — <u>уменьшение (ослабление)</u> ответной реакции при <u>совместном</u> раздражении двух рецептивных полей по сравнению с арифметической суммой реакций при изолированном (<u>раздельном</u>) раздражении каждого из рецептивных полей.

Причина феномена – перекрытие путей на вставочных или эфферентных нейронах благодаря конвергенции.

•Особенности распространения возбуждения в ЦНС: **последействие**

Последействие означает, что после прекращения раздражения к рабочему органу от ЦНС продолжают поступать импульсы – рефлекторная реакция не прекращается сразу после выключения раздражения

Причина: Длительное последействие связано с наличием в ЦНС *кольцевых* связей между нейронами

Структурная основа для последействия – нейронная ловушка (по Лоренто де Но);

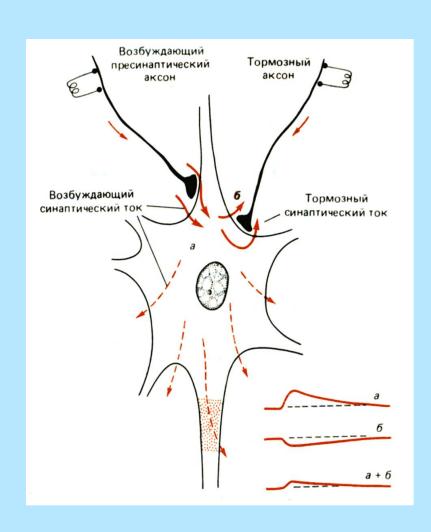
•Особенности распространения возбуждения в ЦНС: проторение (постактивационное облегчение)

Проторение (постактивационное облегчение):

- После возбуждения, вызванного ритмической стимуляцией, последующий стимул вызывает больший эффект;
- Для поддержания *прежнего уровня* ответной реакции требуется *меньшая* сила последующего раздражения.
- <u>Объяснение</u>: Структурно-функциональные изменения в синаптическом контакте:
- Накопление у пресинаптической мембраны везикул с медиатором;

•Свойства нервных центров: высокая утомляемость

Длительное повторное раздражение рецептивного поля рефлекса →ослабление рефлекторной реакции вплоть до полного исчезновения – *утомление*.


<u>Объяснение</u>:

В синапсах:

- истощается запас медиатора,
- уменьшаются энергетические ресурсы,
- происходит адаптация постсинаптических рецепторов к медиатору;

Малая *лабильность* центра → нервный центр функционирует с максимальной нагрузкой, так как получает стимулы от высоколабильного нервного волокна, превышающие лабильность нерва→<u>утомление</u>.

•Свойства нервных центров: трансформация ритма возбуждения

На нейронах в ЦНС сходятся синаптические влияния разного функционального значения. Это приводит к трансформации ритма поступающих импульсов: ЦНС к рабочему органу посылает импульсы с частотой, относительно независимой от частоты раздражений (по афферентам) → как в сторону увеличения, так и уменьшения.

•Свойства нервных центров: повышенная чувствительность к недостатку кислорода

Обусловлена высокой интенсивность обменных процессов:

- □ 100 г нервной ткани (головной мозг собаки) использует О₂
 в 22 раза больше, чем 100 г мышечной ткани.
- □ Мозг человека поглощает 40 50 мл O_2 в минуту: 1/6 1/8 часть всего O_2 , потребляемого телом в состоянии покоя.
- Чувствительность нейронов разных отделов мозга:
- Смерть нейронов коры больших полушарий через 5 6 мин. после полного прекращения кровоснабжения;
- Восстановление функций нейронов ствола мозга возможна после 15 – 20 мин полного прекращения кровоснабжения;
- Функции нейронов спинного мозга сохраняется и после 30 минутного отсутствия кровообращения.

•Свойства нервных центров: пластичность и тонус

- ❖ Пластичность функциональная подвижность нервного центра: возможность его включения в регуляцию различных функций.
- ❖ Тонус наличие определенной фоновой активности.
 - Объяснение: определенное количество нейронов мозга в покое (в отсутствие специальных внешних раздражителей) находится в состоянии постоянного возбуждения генерирует фоновые импульсные потоки.
 - Обнаружено наличие в высших отделах мозга «сторожевых нейронов» даже в состоянии физиологического сна

•Торможение в ЦНС

И. М. Сеченов

Торможение - активный процесс, который ослабляет существующую деятельность или препятствует ее возникновению.

Впервые экспериментально процесс торможения в ЦНС наблюдал в 1862 г. И. М. Сеченов в опыте, который и получил название «опыт торможения Сеченова».

«Коперник второй Вселенной».

•Виды торможения

- •Первичное и вторичное (наличие или отсутствие специального морфологического образования тормозного синапса);
- •Пресинаптическое и постсинаптическое (место возникновения зона межнейронального контакта);
- •А также
- •Возвратное;
- •Реципрокное;
- •Латеральное.

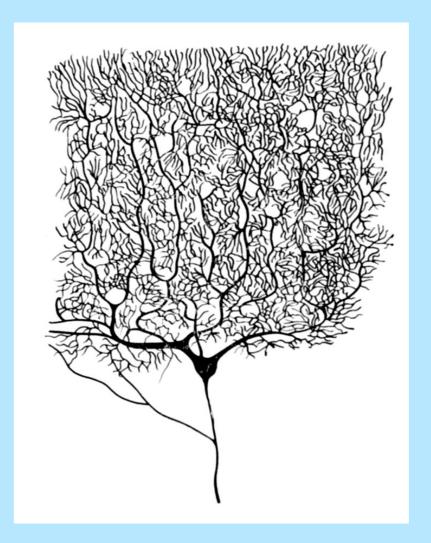
•Вторичное торможение

Николай Евгеньевич Введенский

Осуществляется без участия специальных тормозных структур и развивается в возбуждающих синапсах.

Было изучено Н.Е. Введенским и названо пессимальным.

- Н.Е. Введенский показал, что возбуждение может сменяться *торможением* в любом участке, обладающем низкой лабильностью.
- В ЦНС наименьшей лабильностью обладают *синапсы*.

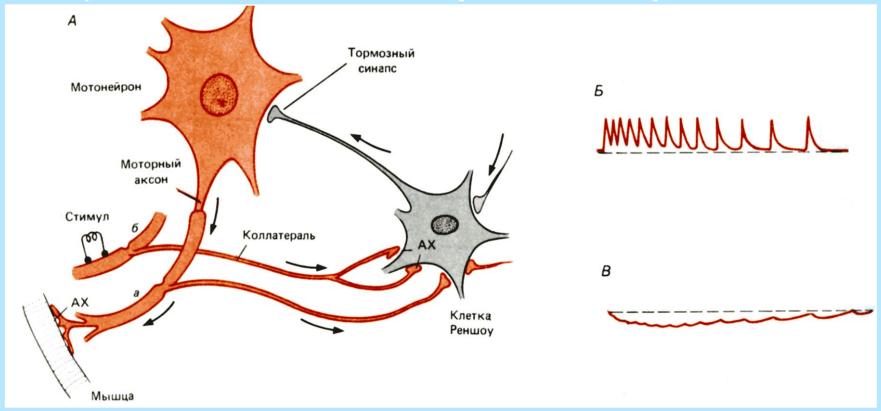

Первичное торможение в ЦНС

- Первичное торможение связывают с наличием в ЦНС специального морфологического субстрата – тормозного синапса (нейрона).
- Тормозные нейроны тип интернейронов, аксоны которых образуют на телах и дендритах возбуждающих нейронов тормозные синапсы.

Примеры тормозных нейронов:

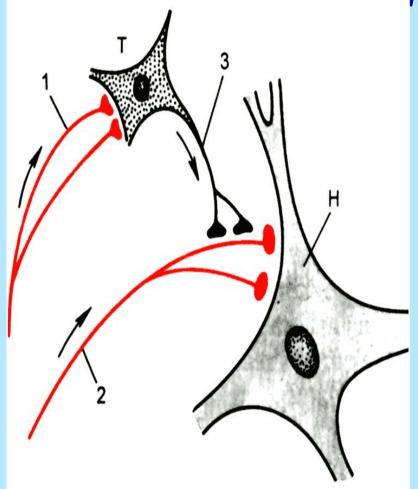
- 1. грушевидные клетки (клетки *Пуркинье*) коры мозжечка и
- 2. клетки *Реншоу в* спинном мозге.

•Тормозные нейроны



Медиаторы передачи тормозящих влияний в ЦНС <u>аминокислоты</u>:

- \bullet Γ AMK \rightarrow
- Глицин → Блокаторы глициновых рецепторов: стрихнин, столбнячный токсин.

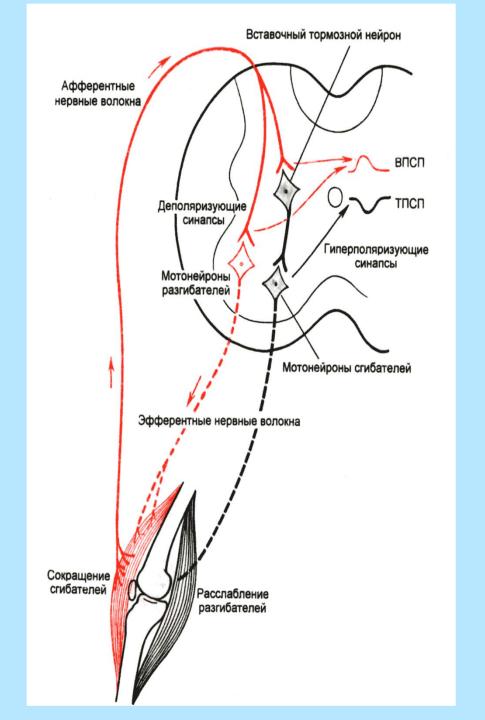

Клетки Пуркинье коры мозжечка. Медиатор синаптических влияний гамма-аминомаслянная кислота

•Торможение в ЦНС: возвратное торможение

- Мотонейрон → по возвратным коллатералям аксона →возбуждение клетки Реншоу (Б) →ТПСП мотонейрона (В,). Импульсная активность мотонейрона прекращается. Медиатор тормозного синапса *глицин*.
- Первичное, гиперполяризационное, постсинаптическое торможение.
 Значение: защитное (охранительное). Обратная отрицательная связь: мотонейрон клетка Реншоу, подавлять его избыточную активность

•Торможение в ЦНС: **пресинаптическое торможение**

Вставочные (тормозные -T) нейроны формируют *аксо-аксональные* синапсы (3) на афферентных терминалях (2) – пресинаптических потношению к мотонейрону.


Механизм: возбуждение Т→ деполяризация мембраны афферента → уменьшение амплитуды ПД в афферентах → уменьшение количества выделяемого медиатора из пресинаптической области синапса → уменьшение амплитуды ВПСП на мембране мотонейрона → уменьшение активности мотонейрона.

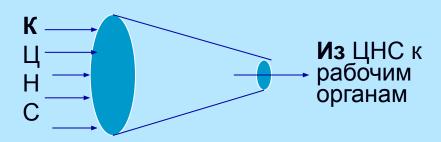
Медиатор тормозного синапса - ГАМК.

Значение: координирующее. Обеспечивает тонкую регуляция. •Торможение в ЦНС: реципрокное торможение

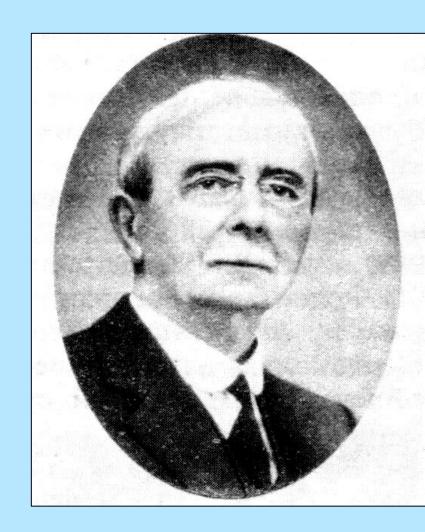
Пример реципрокного (сопряженного) торможения — взаимное торможение центров мышц-антагонистов.

Механизм: возбуждение проприорецепторов (рецепторы растяжения) мышц- сгибателей → активация мотонейронов данных мышц и вставочных тормозных нейронов →постсинаптическое торможение мотонейронов мышц-разгибателей.

•Принципы координации нервных центров


- Координация (лат. со вместе+ ordinatio расположение в порядке) согласование деятельности различных нейронов (групп нейронов) для достижения полезного результата.
- Координация способствует реализации всех функций ЦНС.
- Принципы, лежащих в основе координационной деятельности ЦНС:
- общего конечного пути;
- доминанты;
- иерархии и субординации (соподчинения);
- иррадиации;
- индукции;
- обратной связи.

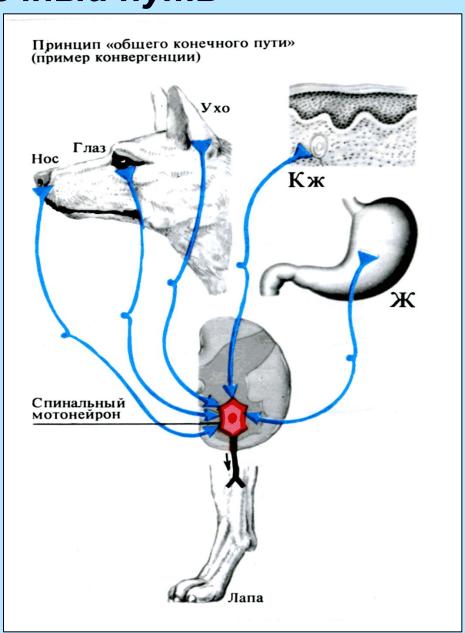
•Принципы координации нервных центров: «общий конечный путь» (конвергенция)


Выдвинут Ч.С. Шеррингтоном в 1906 г.

Конвергенция — морфологическая основа координации, — исходит из анатомического соотношения между афферентными и эфферентными нейронами (5:1).

Такое соотношение Шеррингтон схематически представил в виде воронки:

Воронка Шеррингтона



•Принципы координации нервных центров: «общий конечный путь»

Согласно этому принципу к одному мотонейрону приходит множество импульсов от различных рефлексогенных зон, но только некоторые из них приобретают рабочее значение.

Самые разнообразные стимулы могут стать причиной одной и той же рефлекторной реакции, т.е. происходит борьба за «общий конечный путь».

Функциональные особенности нервных <u>центров</u> определяют какой из импульсов, сталкивающихся на пути к мотонейрону, окажется победителем и завладеет общим конечным путем.

•Принципы координации нервных центров: **доминанта**

Принцип доминанты (лат. dominare господствовать) – установлен А. А. Ухтомским (1923).

По Ухтомскому: **доминанта** — господствующий очаг возбуждения, предопределяющий характер текущих реакций нервных центров в <u>данный</u> момент.

Доминантный центр (очаг) может возникнуть в различных этажах ЦНС при длительном действии гуморальных или рефлекторных раздражителей.

«...Внешним выражением доминанты является стационарно поддерживаемая работа или рабочая поза организма...». (А.А. Ухтомский. Т.1. С. 165. 1950)

Алексей Алексеевич Ухтомский

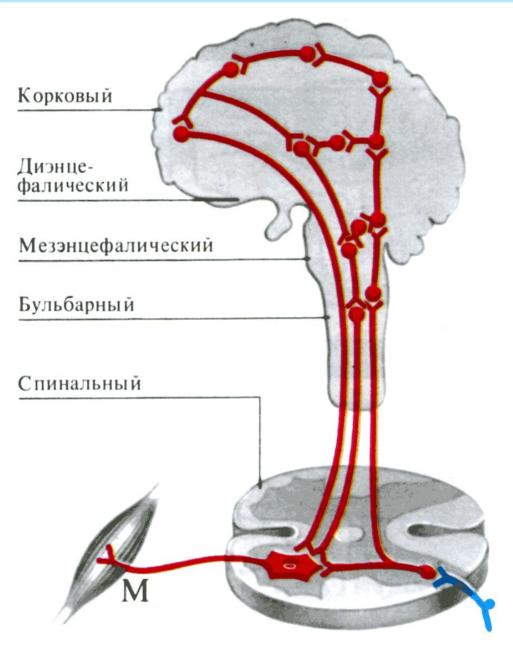
•Доминанта

Свойства доминантного очага:

- 1. Повышенная возбудимость;
- 2. Инерционность;
- 3. Способность к суммации;
- 4. Способность к торможению центров, функционально несовместимых с деятельностью центров доминантного очага.

Доминанта определяет вероятность возникновения той или иной рефлекторной реакции в ответ на текущие раздражители.

Доминанта


- A.A. Ухтомский о (+) и (–) доминанты:
- «... Доминанта, как общая формула, ещё ничего не обещает. Как общая формула, доминанта говорит лишь то, что из самых умных вещей глупец извлечет повод для продолжения глупостей, а из самых неблагоприятных условий умный извлечет умное.»

•Принципы координации нервных центров:

иерархия и субординация

В ЦНС имеют место:

- Иерархические взаимоотношения (греч. hierarchia < hieros священный + arche власть) высшие отделы мозга контролируют нижележащие;
- Субординация (соподчинение) нижележащий отдел подчиняется вышележащим отделам.

•Принципы координации нервных центров: **иррадиация**

- Иррадиация (лат. irradio освещать, озарять) распространение процессов возбуждения (торможения).
- Иррадиация тем шире, чем сильнее и длительнее афферентное раздражение.
- В <u>основе</u> иррадиации многочисленные связи аксонов афферентных нейронов с дендритами и телами <u>вставочных</u> нейронов, объединяющих нервные центры.
- Иррадиация лежит в <u>основе</u> формирования временной (условно-рефлекторной) связи.
- Пррадиация (как возбуждения, так и торможения) имеет свои пределы: → концентрация (формирование доминанты, исключение хаотичности).

•Принципы координации нервных центров: **индукция**

- Индукция («*наведение*») один из важных принципов координации:
- при возникновении возбуждения в одном из участков ЦНС по индукции в сопряженных центрах возникает противоположный процесс – торможение.

И наоборот:

- при возникновении торможения в одних центрах в одном из участков ЦНС по индукции в сопряженных центрах возникает возбуждение.
- Пример: центры мышц-сгибателей правой и левой конечностей

Возрастные особенности свойств нервных центров

- Для организма ребенка характерна более высокая утомляемость нервных центров по сравнению со взрослыми, связанная с меньшими запасами медиаторов в синапсах и их быстрым истощением в результате ритмических раздражений.
- Нервные центры детей более чувствительны к недостатку кислорода и глюкозы вследствие высокого уровня обмена веществ.
- На ранних стадиях развития нервные центры обладают большей компенсаторной способностью и пластичностью.

Возрастные особенности координации нервных процессов

- Ребенок рождается с несовершенной координацией рефлекторных реакций.
- Ответная реакция у новорожденного всегда связана с обилием ненужных движений и широкими неэкономичными вегетативными сдвигами.
- В основе рассматриваемых явлений лежит более высокая степень *иррадиации* нервных процессов, которая
- во многом связана с плохой «изоляцией» нервных волокон (отсутствием у многих периферических и центральных нервных волокон миелиновой оболочки)
 → процесс возбуждения с одного нерва легко переходит на соседний.
- 2. на первых этапах постнатального развития ведущее значение в регуляции рефлекторной деятельности имеет не кора, а подкорковые структуры головного мозга.

Возрастные особенности координации нервных процессов

Дети, в сравнении со взрослыми, имеют:

- меньшую специализацию нервных центров,
- более распространенные явления конвергенции и
- более выраженные явления индукции нервных процессов.
- Доминантный очаг у ребенка возникает быстрее и легче (неустойчивость внимания детей). Новые раздражители легко вызывают и новую доминанту в мозге ребенка.
- Своего совершенства координационные процессы достигают только к 18 20 годам.