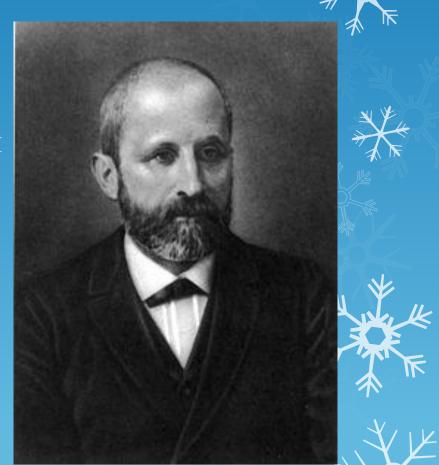


Нуклеиновые кислоты

ЦЕЛЬ:

Узнать что такое нуклеиновые кислоты и какие функции они выполняют.


- 当大大
 - TAKE THE PROPERTY OF THE PROPE

- □ Освоить тему урока и основные понятия.
- □ Научиться анализировать текст.
- 🛮 Формировать навыки самопознания.

Нуклеиновые кислоты - природные высокомолекулярные органические соединения, обеспечивающие хранение и передачу наследственной информации в живых организмах.

Открыты в 1869 году швейцарским биохимиком Фридрихом Мишером

Впервые обнаружены в ядре («нуклеус» - ядро)

Нуклеиновые кислоты

ДНК – дезоксирибонуклеиновая кислота

> Информационная (и-РНК)

РНКрибонуклеиновая кислота

Транспортная РНК (т-РНК)

Рибосомная РНК (р-РНК)

ДНК — дезоксирибонуклеиновая кислота

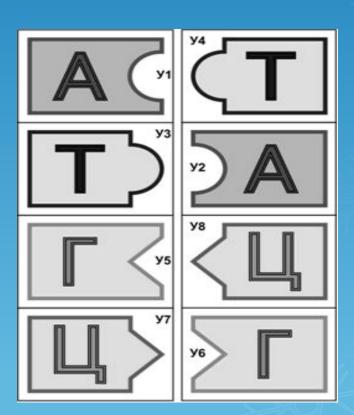
Состав нуклеотида в ДНК

Азотистые основания: Аденин (А) Гуанин (Г)

Цитозин (Ц) Тимин (Т) Дезокси-

Остаток фосфорной кислоты

Правило Чаргаффа

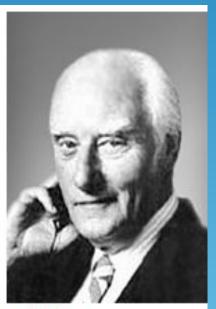


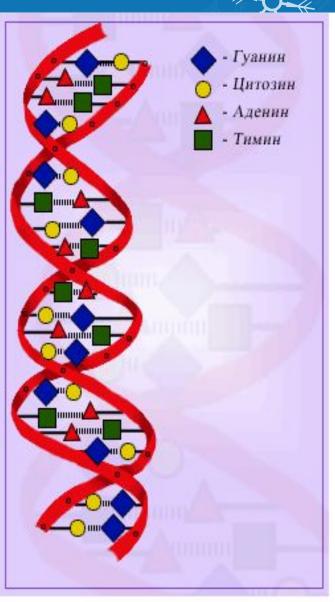
Содержание A=TСодержание $\Gamma=U$

Комплиментарность - это взаимное дополнение азотистых

оснований в молекуле ДНК.

Комплиментарные структуры подходят друг к другу как «ключ с замком»




Модель ДНК

1953 г. – создание модели ДНК

Дж. Уотсон и Ф. Крик

Модель строения ДНК

Комплементарность цепей в ДНК

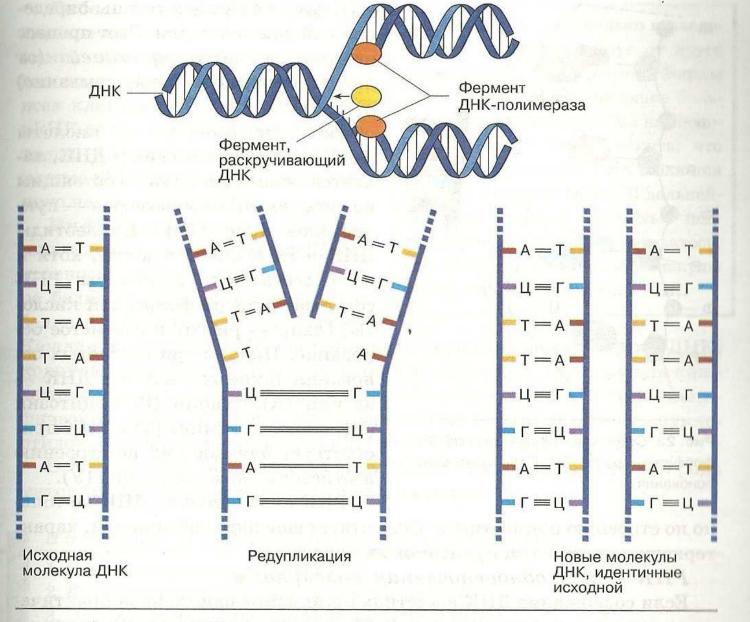


Рис. 22. Редупликация ДНК

Сравнительная характеристика ДНК И РЕК

Признаки	ДНК	РНК
Место- нахождение	Ядро, митохондрии, хлоропласты	Ядрышко, рибосомы, цитоплазма, митохондрии, пластиды
Углевод мономера	Двойная закрученная спираль	Одинарная цепочка
Строение	Дезоксирибоза	Рибоза
Типы	Аденин (А), Гуанин (Г), Тимин (Т), Цитозин (Ц)	Аденин (А), Гуанин (Г), Урацил (У), Цитозин (Ц)
Свойства	Способна к самоудвое- нию, стабильна	Лабильна, не способна к самоудвоению
Функция	Химическая основа гена, синтез ДНК и РНК	Информационная (и РНК), Рибосомная (р РНК), Транспортная (т РНК)

РНКрибонуклеиновая кислота

Состав нуклеотида в РНК

Виды РНК

- 1.Информационная РНК (и-РНК): перенос информации из ядра в цитоплазму клетки к месту синтеза белка
- 2. Транспортная РНК (т-РНК): перенос аминокислот к месту синтеза белка
- 3. Рибосомальная РНК (р-РНК): входят в состав рибосом, определяет их структуру.

Вывод:

