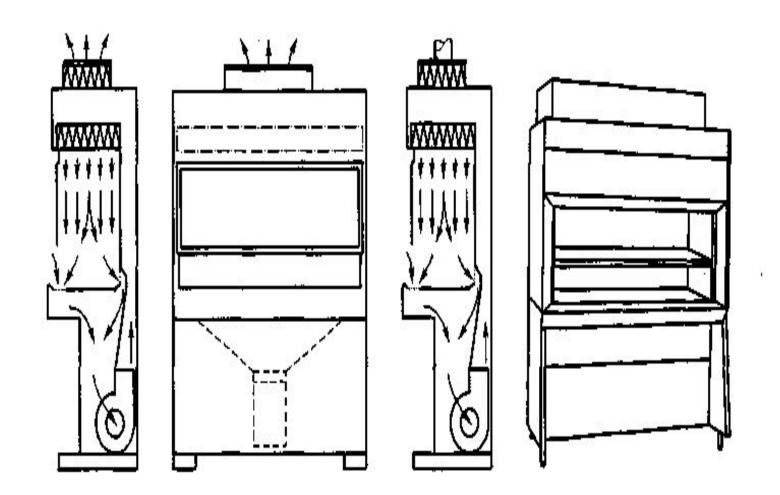
ЛЕКЦИЯ 2.4 ОСОБЕННОСТИ РАБОТЫ В МИКРОБИОЛОГИЧЕСКОЙ ЛАБОРАТОРИИ. ТЕХНИКА И МЕТОДИКА ПОСЕВОВ. МЕТОДЫ ОСНОВНЫХ МИКРОБИОЛОГИЧЕСКИХ ОПРЕДЕЛЕНИЙ. АСЕПТИКА И АНТИСЕПТИКА

ОСОБЕННОСТИ РАБОТЫ В МИКРОБИОЛОГИЧЕСКОЙ ЛАБОРАТОРИИ


- Микробиологическая лаборатория включает ряд помещений, где проводят работу с микроорганизмами или подготовку к ней.
- Под лабораторные комнаты отводят наиболее светлые, просторные помещения, естественная освещенность которых должно менее 110 лк. Поверхность столов и пол составлять не всех лабораторных помещений покрывают легко моющимся материалом пластиком или линолеумом, а стены на высоту 170 см от пола окрашивают в светлые тона. Основное рабочее помещение оборудовано столами лабораторного типа, шкафами и полками для хранения аппаратуры, посуды и реактивов. Столы имеют подводку электроэнергии и снабжены газовыми горелками.

ЛАБОРАТОРИЯ

- Кроме основного рабочего помещения лаборатория имеет стерилизационную, где размещены автоклавы и сушильные шкафы, термостатированную комнату для выращивания микроорганизмов, помещение для хранения культур микроорганизмов, холодильную комнату, моечную.
- Пересевы микроорганизмов осуществляют в боксах разных конструкций от изолированных помещений до настольных камер (ламинаров), чистота атмосферы рабочего пространства в которых обеспечивается циркуляцией стерильного воздушного потока внутри камеры.

РАБОТА В ЛАМИНАРНОМ БОКСЕ

- Ламинарные боксы бывают двух степеней защиты класса I и класса II.
- Ламинары класса I оборудованы притяжной вентиляцией нестерильного воздуха из помещения и выходом этого воздуха в то же помещение после фильтрации (защита от микробных аэрозолей) и в строгом смысле слова не пригодны для стерильной работы.
- Ламинары с защитой класса II образуют внутри бокса поток стерильного воздуха, забор которого происходит из помещения, и который стерилизуется, проходя через бактериальные фильтры. Таким образом, внутренние поверхности бокса остаются стерильными. Конструкция позволяет также проводить стерильные посевы микроорганизмов в струе стерильного воздуха, прошедшего через бактериальные фильтры и распределенного внутри ламинара в виде ламинарного потока (без завихрений).

ПОДГОТОВКА БОКСА ЛАМИНАРНОГО БОКСА К РАБОТЕ

- Перед началом работы ламинар должен быть вымыт с помощью растворов нейтральных детергентов и все доступные внутренние его поверхности должны быть простерилизованы химическими дезинфектантами (70%-й этанол). В течение работы ламинар необходимо мыть раз в месяц, снимая съемные детали поверхности и прочищая пространство под ними. После промывки панели прибора вновь стерилизуют этанолом.
- Бактериальные фильтры ламинара необходимо подвергать процессу химической дезинфекции один раз в течение 1 2 мес. в зависимости от интенсивности использования. Химическую дезинфекцию внутренней поверхности ламинара и в особенности его фильтров проводят парами формальдегида. С этой целью 50 мл 37%-го раствора формальдегида (формалин) наливают в фарфоровую чашку, ставят на подставку и нагревают чашку для медленного (30 мин) испарения формальдегида.

ПОДГОТОВКА ЛАБОРАТОРИИ К РАБОТЕ

- Микробиологическую лабораторию необходимо содержать в чистоте. В ней не должно находиться никаких лишних предметов. Следует регулярно проводить гигиеническую уборку лабораторных помещений. Обеспечить полную стерильность лаборатории очень трудно и это не всегда необходимо, но значительно снизить количество микроорганизмов в воздухе и на различных поверхностях в лабораторных помещениях возможно. Для этого применяют различные способы дезинфекции.
- Слово «дезинфекция» означает обеззараживание, т.е. уничтожение возбудителей инфекционных болезней на объектах внешней среды. Однако при дезинфекционной обработке погибают все бактерии, том числе патогенные. Иногда процесс дезинфекции оказывает стерилизующее действие.

ОБРАБОТКА ПОМЕЩЕНИЙ МИКРОБИОЛОГИЧЕСКОЙ ЛАБОРАТОРИИ

- Пол, стены и мебель в микробиологической лаборатории обрабатывают пылесосом и протирают раствором различных дезинфицирующих веществ. Обработка пылесосом обеспечивает освобождение предметов от пыли и удаление с них значительного количества микроорганизмов. Установлено, что при 4-кратном проведении щеткой пылесоса по поверхности предмета с него удаляется примерно 47% микроорганизмов, а при 12-кратном до 97%.
- В качестве дезинфицирующих растворов чаще всего пользуются 2 3%-м раствором соды (бикарбоната натрия), 3 5%-м водным раствором фенола (карболовой кислоты) или лизола (препарата фенола с добавлением зеленого мыла), 0,5-3%-м водным раствором хлорамина и некоторыми другими дезинфектантами.

ВОЗДУХ В ЛАБОРАТОРИИ ОЧИЩАЮТ ПРОВЕТРИВАНИЕМ - ЭТО НАИБОЛЕЕ ПРОСТОЙ СПОСОБ

- Но наиболее эффективный и часто применяемый способ дезинфекции воздуха - ультрафиолетовое облучение лучами с длиной волны от 260 нм. Эти лучи обладают высокой антимикробной активностью и могут вызывать гибель не только вегетативных клеток, но и спор микроорганизмов.
 - Воздействие ультрафиолетовых лучей должно быть непосредственным и длительным. Это связано, прежде всего с тем, что ультрафиолетовые лучи обладают слабой проникающей способностью. Например, они не проходят через обычное стекло, легко поглощаются частицами пыли. Кроме того, листы белой бумаги, пластины алюминия и хрома, а также предметы, изготовленные из них, могут заметно отражать ультрафиолетовые лучи. Поэтому в зависимости от степени загрязнения воздуха для его стерилизации требуется облучение от 30 мин до нескольких часов.

В КАЧЕСТВЕ ИСТОЧНИКА УЛЬТРАФИОЛЕТОВОГО ИЗЛУЧЕНИЯ ИСПОЛЬЗУЮТСЯ *БАКТЕРИЦИДНЫЕ ЛАМПЫ*

Излучателем в них служит электрическая дуга, возникающая в парах ртути низкого давления. Более 80% испускаемого ими спектра приходится на волну длиной 254 нм. Обычно бактерицидные лампы представляют собой трубки различного диаметра и длины, изготовленные из специального стекла, пропускающего излучение с длиной волны 254 нм. Каждая трубка вмонтирована в корпусдержатель и может быть снабжена отражателем. Необходимо иметь в виду, что ультрафиолетовые лучи могут вызывать тяжелые поражения глаз, поэтому при работе с бактерицидными лампами нужно строго следить за тем, чтобы ни прямые, ни отраженные ультрафиолетовые лучи не попадали в глаза. В небольших помещениях при включенной бактерицидной лампе находиться нельзя. Следует также учитывать, что при длительной непрерывной работе бактерицидной лампы интенсивность излучения снижается. В этих случаях облучение целесообразно вести с перерывами.

РАБОЧЕЕ МЕСТО, ГДЕ НЕПОСРЕДСТВЕННО РАБОТАЮТ С КУЛЬТУРАМИ МИКРООРГАНИЗМОВ, ТРЕБУЕТ ОСОБЕННО ТЩАТЕЛЬНОЙ ОБРАБОТКИ

- Рабочий стол следует дезинфицировать не только до начала работы, но и после ее окончания.
- Для протирания поверхности стола можно использовать растворы и хлорамина, а также 70%-е (по объему) растворы изопропилового или этилового спиртов. Спирты весьма эффективны отношении вегетативных форм микроорганизмов. Названные спирты можно также применять для дезинфекции рук. В тех случаях, когда поверхность стола имеет водоотталкивающее покрытие, особенно удобен лизол. Поверхность рабочего стола дезинфицировать и ультрафиолетовыми лучами. При этом следует учитывать, что бактерицидное действие лучей тем выше, чем ближе облучаемая поверхность к источнику излучения.

ЗАПРЕЩАЕТСЯ!

- В лаборатории не разрешается курить, хранить и употреблять еду, напитки, жевательную резинку.
- Работать следует в халатах и при необходимости в комплектах защитнойодежды.

ТЕХНИКА И МЕТОДИКА ПОСЕВОВ

- Техника посева микроорганизмов в жидкие, полужидкие и на плотные питательные среды
- Посев уколом
- Посев на плотную среду в чашки Петри

ТЕХНИКА БЕЗОПАСНОСТИ

- При выполнении исследований по изучению:
- способов приготовления питательных сред;
- подготовки посуды для культивирования микроорганизмов;
- изучению состава питательных сред и техники посевов культур микробов в жидкие, полужидкие и на плотные среды
- необходимо неукоснительно соблюдать правила, обязательные при работе с культурами микроорганизмов, газовыми горелками, сосудами, работающими под давлением (автоклавы), лабораторной стеклянной посудой, электрооборудованием.

МЕТОДЫ ОСНОВНЫХ МИКРОБИОЛОГИЧЕСКИХ ОПРЕДЕЛЕНИЙ

- МЕТОДЫ КОЛИЧЕСТВЕННОГО УЧЕТА МИКРООРГАНИЗМОВ:
- ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА КЛЕТОК С ПОМОЩЬЮ СТАНДАРТА МУТНОСТИ;
- СЧЕТНОЙ КАМЕРЫ;
- ЧАШЕЧНЫЙ МЕТОД КОХА.

ОБЩИЕ ПОНЯТИЯ

О росте микроорганизмов в естественных субстратах или в питательных средах микробиологи судят по изменению количества клеток или биомассы микробов в процессе их культивирования. Такой подход основан на способности микроорганизмов размножаться, т.е. начинать и завершать клеточное деление, что предполагает возможность контроля увеличивающегося числа бактериальных дискретных единиц. При этом используются разные методы контроля (определения) количества клеток микроорганизмов: визуальным сравнением со стандартом мутности; нефелометрическим анализом культур; микроскопическим подсчетом микробных частиц в определенном объеме с применением счетных камер; электронно-микроскопическим подсчетом бактерий, проходящих через соответствующий канал (жиклер); путем обычного визуального подсчета колоний, выросших на плотной среде в чашках Петри (чашечный метод).

АСЕПТИКА И АНТИСЕПТИКА

AHTUCEUTUKA

- 1) Комплекс мер по подавлению роста и размножения потенциально опасных для здоровья человека микроорганизмов при проведении полостных операций. Включает стерилизацию операционного белья, хирургического инструмента, воздуха в операционных. Впервые применена английским хирургом Дж. Листером в 1867 г.
- 2) Метод консервации материалов и изделий путем обработки их биоцидами- пропитка деревянных железнодорожных шпал креозотом.
- В практической микробиологии термин *асептика* используется для аналогичных мер, предпринимаемых при выращивании чистых культур микроорганизмов с целью предупреждения их контаминации (стерилизация посуды, сред, проведение пересева в специальных боксах).