Транспорт газов кровью и газообмен в организме

При изучении внешнего дыхания используют следующие понятия:

Альвеолярный воздух Содержится в легких после нормального выдоха

Выдыхаемый воздух

Первые порции выдохнутого. воздуха. Это смесь воздуха альвеолярного и мертвого пространства.

Состав воздуха в %

газ	Атмосфер- ный	Выдыха-	Альвеоляр- ный
O ₂	20,93	16	14
CO ₂	0,03	4,5	5,5
N ₂	79,04	75,5	80,5

Факторы, определяющие диффузию газов в легких.

- 1. Альвеолярно капиллярный градиент (АКГ).
- •2. Отношение вентиляции к перфузии.

- •3. Длина пути диффузии.
- •4. Диффузионная способность газов.
- •5.Площадь диффузии.

1. Альвеолярно-капиллярный градиент

Это разность парциального давления газов

в альвеолярном воздухе и напряжения газов в крови.

Парциальное давление (Po_2 или Pco_2)

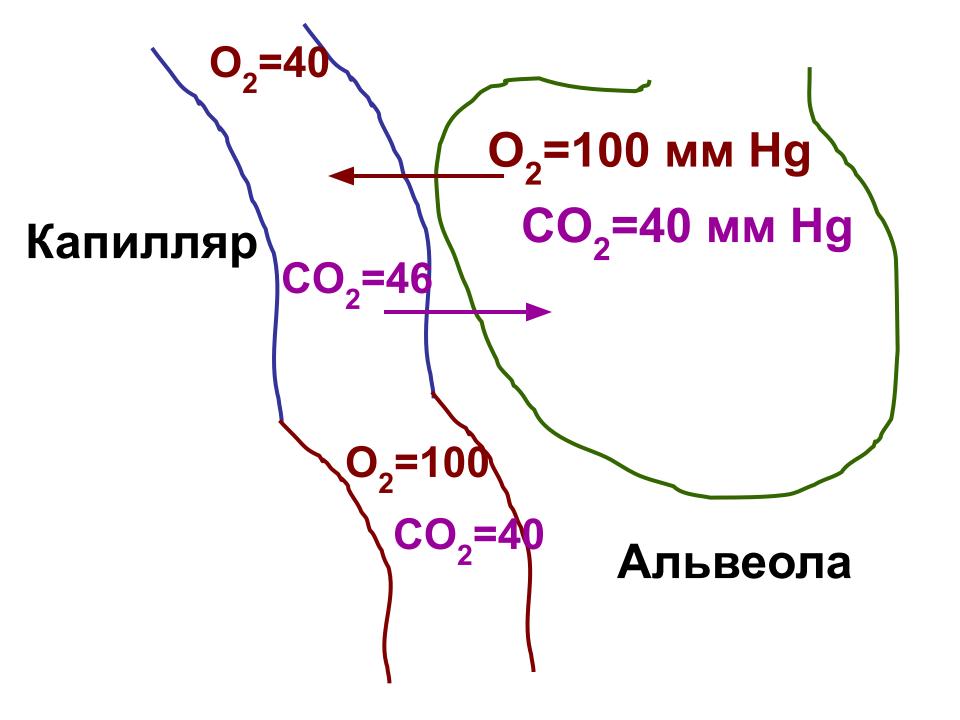
- Это часть давления смеси газов,
- приходящаяся на долю одного газа.
- Парциальное давление зависит:
- а) от % содержания газа в смеси газов;
- б) от величины общего давления.
- Измеряется в мм рт.ст.

Расчет парциального давления газов

- Например РО₂ в атмосферном воздухе.
- 100% газ 760 мм рт. ст.
 21% О₂ X мм рт. ст.
- x = 21.760/100 = 159 мм рт. ст. PO_{2} в атмосферном воздухе.

- •При расчете парциального давления газа в альвеолярном воздухе
- нужно учитывать давление
- находящихся там водяных паров = 47мм рт.ст.
- Их нужно вычитать из общего давления газовой смеси.

Парциальное напряжение газа

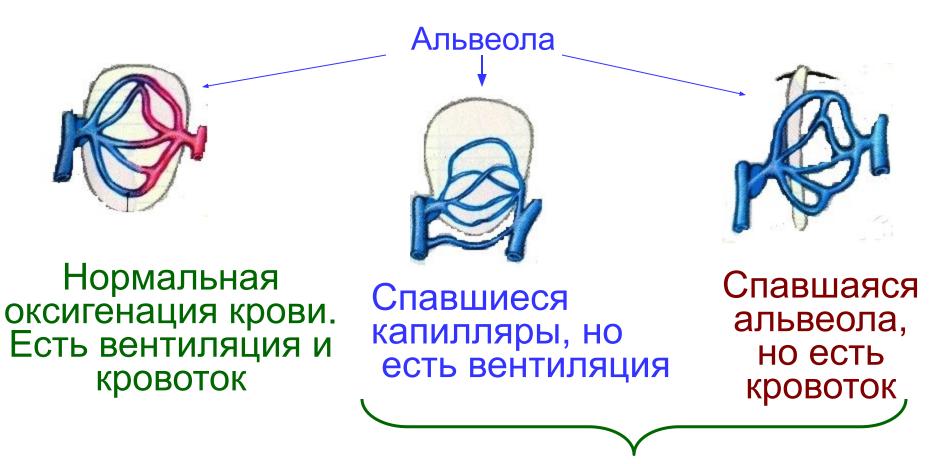

- - это сила, с которой
- растворенный в жидкости газ
- стремится покинуть ее.
- Обычно устанавливается
- динамическое равновесие
- между газом в жидкости и над жидкостью.

Величина парциального давления и напряжения газов в мм рт. ст.

Газ	% содержание в альвеолах	Парциальное давление в легких и напряжение в артериальной крови	Парциальное напряжение в венозной крови
0 ₂	14,0	100	40
CO ₂	5,5	40	46

Направление диффузии газов в легких.

- •В малом круге кровообращения O_2 из легких идет в венозную кровь(АКГ для O_2 = 60мм рт. ст.).
- •а СО₂ из крови в легкие.
- АКГ для $CO_2 6$ мм рт. ст.



2) Отношение вентиляции к перфузии (вентиляционно-перфузионные отношения) (ВПО)

- 1.ВПО = MAB/MOK = $4 6\pi / (4,5 5\pi) = 0,8 1,1$.
- В норме МАВ составляет в среднем 0,8 от МОК.

- •Снижение ВПО происходит в результате:
- •а)отсутствия кровотока в некоторых альвеолах;
- •б)сниженной вентиляции альвеол или полное ее отсутствие;

Возможные отношения вентиляции и перфузии в альвеолах

Оксигенации крови нет

Приспособление вентиляции к перфузии

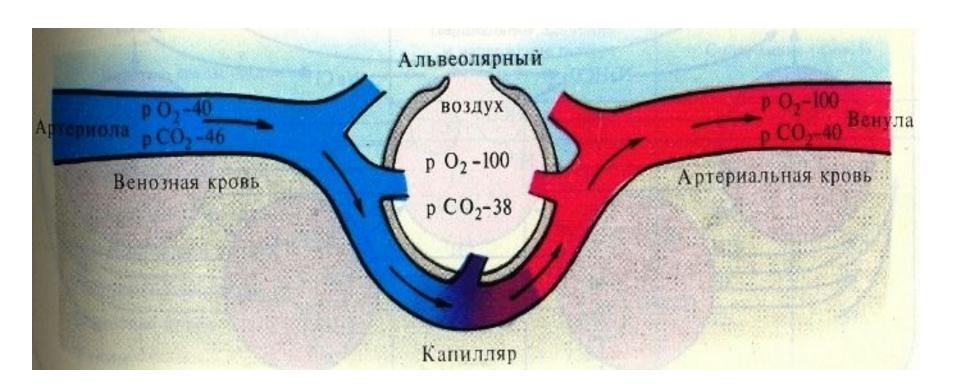
- При изменении газового состава
- альвеолярного воздуха
- возникают альвеолярно-капилярные рефлексы,
- приводящие в соответствие вентиляцию и перфузию:

а) вазомоторные реакции.

- •При снижении РО или ↑РСО
- •в альвеолах возникает вазоконстрикция.

б) Бронхомоторные реакции.

• При ↓ РСО₂ в альвеолярном воздухе возникает бронхоконстрикция.


Физиологическое мертвое пространство

- Часть легких, где не происходит
- газообмена между альвеолярным воздухом и кровью
- называется альвеолярным мертвым пространством.

- Сумма анатомического
- и альвеолярного МП
- называется физиологическим мертвым пространством.

•ВПО в разных областях легких зависят от положения тела.

• В результате газообмена между кровью и альвеолярным воздухом происходит превращение венозной крови в артериальную.

- 3) Длина пути диффузии газа.
- CO_2 и O_2 проходят путь:
- альвеолярная стенка
- + межклеточное пространство
- + базальная мембрана капилляра
- + эндотелий капилляра
- + слой плазмы + мембрана эритроцита.

- •Увеличение длины пути диффузии
- •приводит к ухудшению оксигенации крови.

4) Диффузионная способность газа

- \cdot У CO_2 она выше чем у O_2 ,
- т.к. АКГ для СО₂ составляет
- •6 MM pt. ct.,
- •а для $O_2 60$ мм рт. ст.

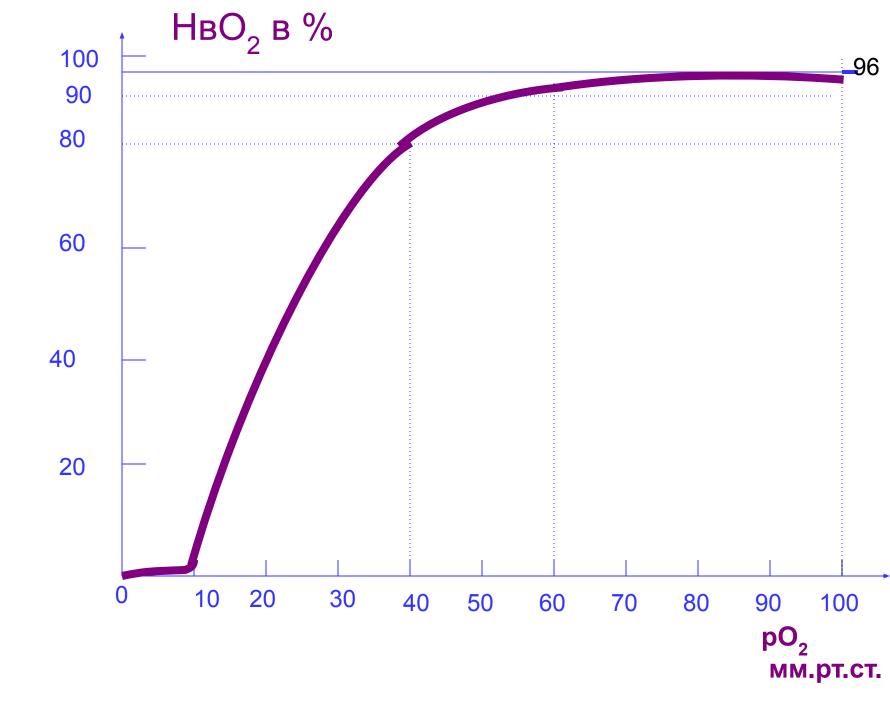
5) Площадь диффузии

- Зависит от поверхности альвеол и капилляров,
- •через которые идет диффузия (зависимость прямая).

Транспорт газов кровью.

- 1) Перенос кислорода кровью осуществляется:
- а) в физически растворенном состоянии (0,3мл в 100мл плазмы).
- •б) в виде оксигемоглобина HbO₂

- •В таком виде в 1000мл крови содержится 180 200мл O_2 ;
- KEK = $HB(\Gamma/\pi)$ 1,34мл.

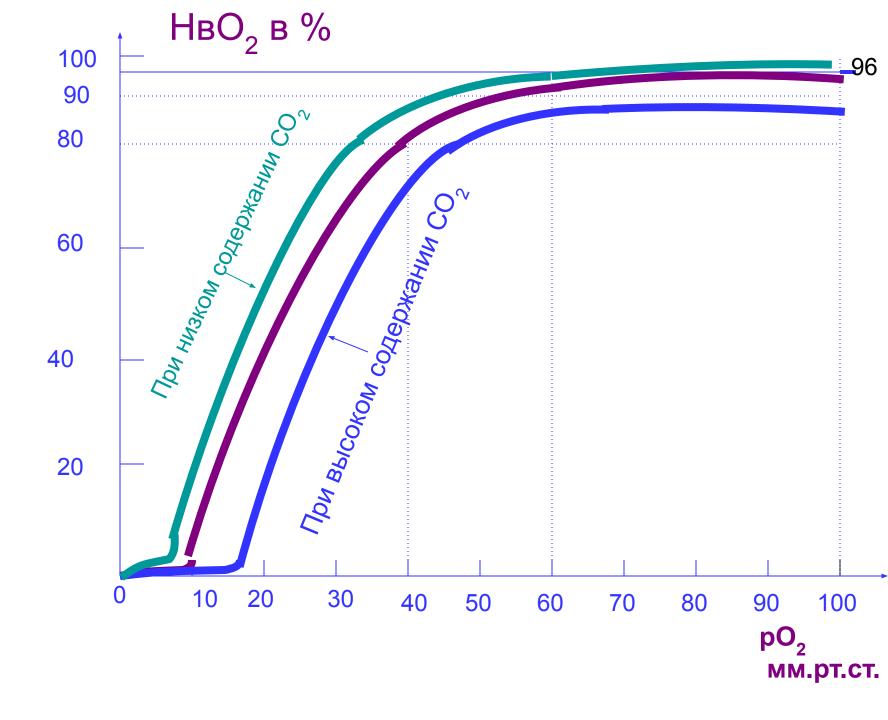

Факторы влияющие на образование HBO_2 .

- 1) Напряжение O_2 в крови.
- Графически зависимость количества HbO_2 от напряжения O_2 можно представить в виде кривой диссоциации оксигемоглобина.
- Кривая носит S образный характер.

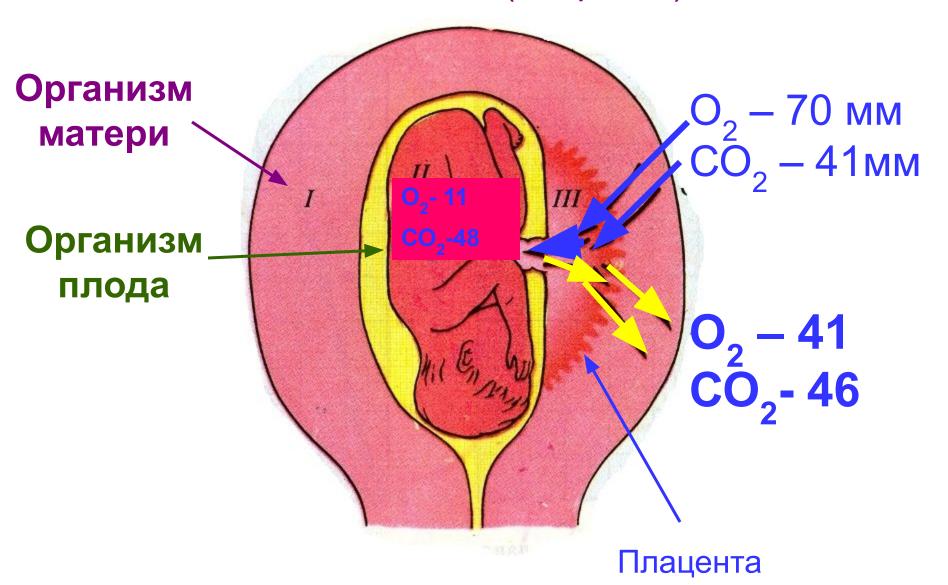
- При напряжении $O_2 = 0$ Hb $O_2 = 0$.
- Повышение содержания O_2 вызывает не совсем пропорциональный рост количества HbO_2 .

- При повышении PO_2 с 10 до 40мм рт ст.
- количество НьО₂ быстро нарастает до 80%.
- При 60мм рт ст. Нb насыщается O_2 на 90%.
- При дальнейшем увеличении PO₂ количество HbO₃ увеличивается до 96%.

• Кривая диссоциации оксигемоглобина показывает сродство Hb к O₂



Изменение сродства Hb к кислороду


- Снижение сродства Hb к O_2 и сдвиг кривой диссоциации HbO_2 вправо вызывают:
- а) снижение рН (закисление крови)...
- б) Увеличение напряжения СО₂ в митохондриях (эффект Вериго).
- в) Повышение t⁰.

- г) Повышение активности 2,3 дифосфоглицерата
- Это фермент в эритроците, ускоряющий отдачу гемоглобином O_2
- (активен при гипоксии).

•При работе тканей все эти факторы вызывают распад HbO₂ и отдачу тканям кислорода.

Газообмен плода (мм рт. ст.)

Транспортные формы CO_2 .

- 2) В виде карбгемоглобина 50 мл.
- 3) В виде натриевой соли угольной кислоты в плазме и К соли в эритроцитах 480 мл.
- 4) В растворенном в плазме состоянии 25 мл.

Итого в 1 литре венозной крови содержится 580 мл CO_{2} .

Газообмен в тканях.

- •Осуществляется путем диффузии по градиенту концентрации:
- CO_2 в кровь, O_2 в ткани.

- •Причем удаление СО₂
- •происходит легче,
- •чем насыщение О2,
- •т. к. CO₂ лучше диффундирует.

На газообмен в тканях влияют те же факторы, что и в легких.

• 1) Разность парциального напряжения газов в крови, межклеточном пространстве и клетке.

2) Площадь диффузии.

- •Зависит от площади поверхности работающих капилляров,
- •числа эритроцитов.

3) Длина пути диффузии

- Она меньше при хорошо развитой капиллярной сети.
- •4) Скорость кровотока.
- •5) рН, температура, парциальное напряжение CO₂.

Коэффициент утилизации кислорода (КУК)

- КУК это количество потребленного О₂ в % от общего содержания его в артериальной крови.
- КУК = $[(O_2a O_2B) / O_2a]$ · 100
- $KYK = [(20 12) / 20] \cdot 100 = 40 \%$

В разных тканях КУК различен.

- В миокарде, сером веществе мозга, печени = 40 60%.
- •При работе КУК растет.
- В мышцах сердца и скелета может увеличиваться до 90%.

Миоглобин

- Депонирует O_2 в мышцах.
- Близок по строению к Hb.
- Имеет более высокое сродство к O_2 .
- При РО₂ 3 4 мм рт. ст. 50% миоглобина переходит в оксигемоглобин,
- а при PO₂ 40мм рт. ст. 95%.

• Отдает мышце O_2 , когда PO_2 в мышцах падает ниже 10-15 15мм рт. ст.

Содержание газов в крови

Газ	Артериальная кровь		Растворено Мл газов в 100 мл плазмы	Венозная кровь	
	Содержа- ние газов (мл в 100 мл крови)	Парци- альное Напря- жение (мм рт. ст.)		Содержание газов (мл в 100 мл крови)	Парциаль ное напряже- ние (мм рт. ст.)
02	18-20	100	0.3	12-14	40
CO ₂	52-54	40	2,5	58	46