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What is ,,the nexus” ?

an integrated approach promoting “systemic thinking”
e.g. externalities, tradeoffs, synergies

Why do we need it ?

increasing demand for natural resources,

for food, energy and other human securities,

threatens environmental sustainability , ecosystem services
-> need for sustainable intensification

-> need for coherent policies across scales

-> to be supported by multi-scale, cross-sectoral analyses

How to implement it?

mostly through case studies:
Burkina Faso (food-biofuel) , Mauritius (sugarcane for biofuel),

— IVIENA (climate adaptation — mitigation), California, Blue N|Ie -
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Tool box for nexus tradeoff analysis,
integrated scenarios, policy and investment support

WEAP / LEAP (AEZ)

 simulating long-term resource allocations,

* integrated network-based demand and supply analysis,

* transparent, flexible, user-friendly, low initial data requirements,
* similar user interfaces and terminologies,

* widely used in ministries, authorities, bureaus, NGOs, universities etc:
100s of users worldwide.

* for free to non-profit developing country institutions

* frequent trainings in Sweden, but also in various regions
(plus online tutorials and handbooks)

to be developed jointly with stakeholders and scientists



Groundwater depletion
Water quality

Unmet ecological flows
Costs

Insufficient water for hydro and
cooling, even with increased
groundwater pumping.

Still insufficient water--further
enhance supply with
desalination.
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WEAP water Evaluation And Planning
www.weap21.org

 |Integrated watershed planning,
matching demands and

supplies

© GlS-based, graphical drag & | =
drop interface - YA

. Additional simulation modeling == T\
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land use effects, R A
groundwater dynamics, gl AAe |
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LEAP Long range Energy Alternatives Planning

System

« Typically organized by sector, subsector, end-use and

device.

» Users can edit the tree on-screen using standard editing
functions (copy, paste, drag & drop)

o Structure can be detailed and end-use oriented, or
aggregate (e.g. sector by fuel).
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Cost-Benefit Analysis
(“externalities”) in (WEAP) LEAP

« Societal perspective of costs
and benefits (i.e. economic not
financial analysis).

- User specifies boundaries

- Cost-benefit analysis calculates
the Net Present Value (NPV) of
the differences in costs between
scenarios.

Demand
(costs of saved energy,
device costs, othernon-fuel
costs)

Transformation
(Capital and 0 &M costs)

Primary Resource Costs
or
Delivered Fuel Costs

Environmental
Externality Costs




Previous case studies (KTH, SEl) Mauritius

THE IMPACT OF TRANSFORMING TWO SUGAR PROCESSING PLANTS
TO PRODUCE 2" GENERATION ETHANOL (PROJECTED FOR 2020)

Reduced greenhouse gas
emissions

Reduced fuel imports Reduced expenditures

Baseline

[ton COseq)

[1000 US$ - Real 2005]

Energy Security in changing Climate conditions

Small island with clear boundaries- data availability

Producer and exporter of sugar (occupying 80 % cultivated land area)
Dependent on fuel imports for its energy requirement

Highly vulnerable to climate change

Nexus (,CLEWSs®) approach formally adopted for national policies by the government
9



Previous case studies (KTH, SEI) Burkina Faso

* Increasing Population
(water demand, energy
access, food security)

« Land locked country

» Population increase and
urbanization (centralized
demand)

 Dependence on one main
export crop (cotton)

* Continuous deforestation

* No own fuel resource —
Dependence on wood for as
energy source

« Agricultural intensification on
suitalble land for food security,
biofuel production and reduced
emissions.

(CLEW Integration, KTH)

Total Future Land Requirements for the 10 major crops under current yleld after projecting popultion growth in BF
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Previous case studies (KTH, SEI) California

« Water for Energy and . Na
Energy for Water .

» The water sector accounts for 2
19% of California’s electricity 1 °
consumption 0.5 v

* Importation of water from North 0 \/\/V\J\'\v/\ ‘
to South California e

.. LR R R S S, VRN . TR

« Proposed scenario: introduce a SN U P A S A g

share of water supply (5%) from
. : Figure 3. Changes in DESAL Scenario compared

desalination of sea water with BAU

« Result: quantified tradeoff: a. Increase in water-sector electricity use (TWh)
increased energy Consumption b. Increase in water-sector GHG emissions

(million tonnes CO.e)

vs water saved (not imported)

c. Reduction in water imports (billion m3)
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Application of the nexus concept to the Ethiopian Blue Nile

Supporting ongoing activities, plans and strategies

e.g. GTP & CRGE:

agricultural intensification / commercialization / irrigation,
renewables / hydropower / bioenergy crops

|dentifying pathway to achieve goals such as:
e improved water use efficiency (GTP)
* avoiding further cropland expansion (CRGE)

For discussion: how are the national goals broken down
into Blue Nile planning and management?

STOCKHOLM @
ENVIRONMENT § 3.(,1"%:1'
INSTITUTE ocuuonu.




Application of the nexus concept to the Ethiopian Blue Nile

proposed focus on biomass production,

tradeoff analyses / testing different strategies, e.g.
small- vs. large-scale storage

water for hydropower vs. water for agriculture
water for biofuels vs. water for food production
energy for agricultural intensification

goal: ,,improved landscape configurations” for resilience
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Thousand Megawatt-Hours

Initial LEAP model for Ethiopia / Blue Nile

« National Model on LEAP (to be linked with Blue Nile
Basin Model on WEAP and eventually with Land Use
using GAEZ

« Disaggregation of data from Blue Nile Region

Processes: Exogenous Capacity (MW)
Demand: Energy Demand Final Units Scenario: Reference, Region: Region 1
Scenario: Reference, Fuel: All Fuels
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RESOURCE PRIMARY SECONDARY DISTRIBUTION FINAL USE
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Initial WEAP model for Lake Tana

quantifying upstream <—> downstream effects and tradeoffs
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Implementing the nexus.

do sectors cooperate?

N ® e T . agriculture

o< R SR
ARSI~ .
WX S L\
L =——%—2
o L
L J =
L J

institutional network analysis

inter-agency coordination, e.g. via 4. SO
interministerial steering group :
(CRGE)
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The nexus and (healthy) ecosystem services
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The nexus and (degraded) ecosystem services
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