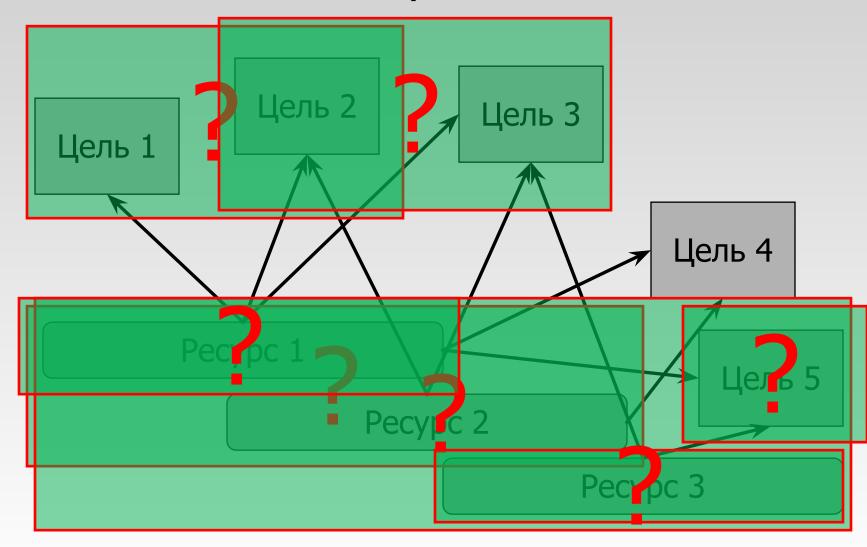


Лекция 6. **Математические методы** управления инвестиционной деятельностью

Содержание лекции:

- 1. <u>Классификация методов принятия инвестиционных</u> решений в условиях неопределённости
- 2. Метод альтернативных целей
- 3. <u>Анализ приоритета объектов инвестирования АНР-</u> методом
- 4. <u>Применение теории многоатрибутной полезности для</u> принятия инвестиционных решений
- 5. Моделирование инвестиционного риска

Литература


- Шелобаев С.И. Экономико-математические методы и модели: Учеб. пособие для вузов. 2-е изд. М.: ЮНИТИ-ДАНА, 2005. Раздел III.
- Управление фирмой / Под ред. *Л.Л. Разумновой*. М.: МАКС Пресс, 2009. Часть 2, с. 40-51.
- Моделирование экономических процессов: Учебник / Под ред. *М.В. Грачёвой, Л.Н. Фадеевой, Ю.Н. Черемных*. М.: ЮНИТИ-ДАНА, 2005. — Глава 9.
- Шарп У. и др. Инвестиции. М.: ИНФРА-М, 1997.

- Методы принятия инвестиционных решений в условиях неопредел

 - Неопределён-ность цели
 Оптимизация системы целей (целочисленное программирова-ние)
 - AHP
 - Неопределённость эффекта
 - Теория игр
 - Стохастическое программирова-ние
 - Метод Марковица
 - Теория полезности Неймана-Моргенштерна
 - Неопределён-ность измерителя
 - Анализ полезности альтернатив

6.2. Метод альтернативных целей

Максимум экономического эффекта:

$$\max \sum_{d \in D} c_d x_d - \sum_{r \in R} \left(c_r - \sum_{s \in R_r} c_s \right) x_r$$

Затраты бюджетных средств:

$$\sum_{r \in R} \left(c_r - \sum_{s \in R_r} c_s \right) x_r \leq B$$

Количество используемых ресурсов:

$$\alpha_{dr}X_d$$
 , X_r , $d \in D$, $r \in R_d$

Несовместимые цели:

$$\sum_{d \in D_i} \boldsymbol{X}_d \text{ ,, } \boldsymbol{1,i} \in \boldsymbol{I}$$

Заменимость ресурсов:

$$X_r$$
, X_s , $r \in R$, $S \in R_r$

Логические переменные:

$$X_d \in \{0,1\}, d \in D$$

Целочисленные переменные:

$$X_r \in \{0\} \cup N$$

- *D* множество возможных целей инвестиционной программы
- $lackbox{\blacksquare} R_d^-$ множество ресурсов, необходимых для достижения цели $d \in D$
- \blacksquare R множество всех ресурсов
- R_r множество ресурсов, которые могут быть заменены ресурсом r
- \blacksquare I множество множеств несовместимых целей
- D_i i-е множество несовместимых целей ($i \in I$)
- $x_d^{'}$ логическая переменная, означающая включение (1) или исключение (0) цели $d \in D$ из инвестиционной программы
- x, x количество ресурсов r и s соответственно ($r \in R$, $s \in R$)
- В максимально возможный объём финансирования
- c_d выгоды (в денежном выражении), обусловленные достижением цели d
- c_r , c_s затраты (в денежном выражении) на единицу ресурсов r и s соответственно ($r \in R$, $s \in R$)
- $lackappa_{dr}$ количество ресурса $r \in R_{d'}$ необходимое для достижения цели $d \in D$
- N множество натуральных чисел

6.3. Метод АНР

- Входная информация
 - дерево целей
 - «достичь», «построить», «освоить», «внедрить», «завершить», «приступить к»
 - попарное сравнение значимости целей, относящихся к одной и той же вышестоящей цели
 - \bullet каждой паре целей ставится в соответствие неотрицательное число $\textit{v}_{\scriptscriptstyle i\nu}$
 - во сколько раз цель i важнее цели k
 - экспертная оценка
 - $V_{ik} = 1/V_{ki}$; $V_{ii} = 1$

NB: применяется, если стоимостная оценка целей недоступна или невозможна

- Алгоритм
 - Расчёт коэффициентов приоритета целей
 - Проверка органичности оценки приоритетов
 - Расчёт обобщённых приоритетов для всей системы целей
 - Оценка проекта

■ Расчёт коэффициентов приоритета целей

- $\mathbf{V} = (V_{ik})$
 - находим для этой матрицы *собственный вектор* **w** из уравнения $(\mathbf{V} k\mathbf{I})\mathbf{w} = \mathbf{0}$
- Принимаем w_i в качестве коэффициента приоритета цели i, полагая $\mathbf{w} = (w_i)$
 - Расчёт пов торяется для каждого набора целей, относящихся к одной и той же вышестоящей цели

■ Проверка органичности оценок

- Об органичности судят, сопоставляя величину k с числом целей, представленным матрицей ${f V}$
 - Расчётные формулы содержатся в рекомендуемой литературе
- Если оценка не органична, экспертное сравнение значимости целей проводят заново

■ Расчёт обобщённых приоритетов для всей системы целей

 Обобщённый приоритет цели равен произведению коэффициента её приоритета и коэффициентов приоритета всех целей, вышестоящих по отношению к ней

• Оценка проекта

- Если издержки не имеют значения (укладываются в имеющийся финансовый ресурс), выбирают проект, реализующий набор целей, имеющий наибольшую сумму обобщённых приоритетов
 - Можно учесть степень достижения цели, умножая соответствующий коэффициент на её обобщённый приоритет
- Если издержки по проекту известны, то их делят на сумму обобщённых приоритетов достигаемых данным проектом целей и выбирают проект по минимальному значению получившегося показателя

6.4. Теория многоатрибутной полезности и её применение

- Идентифицируются критерии качества достижения цели инвестиционной деятельности
 - Обычно используется метод их иерархической структуризации
 - Чем обширнее список критериев, тем точнее анализ
 - Чем менее критерии зависимы друг от друга (чем ниже корреляция между ними), тем точнее анализ
 - Если критерий качественный, используется корреляция рангов
- Определяется функция полезности каждого критерия по отношению к цели инвестиционной деятельности
 - Экспертная оценка с последующим отображением её результатов на выбранную функциональную форму
 - Область значений [0; 1].
 - Подробности в рекомендуемой литературе
- Определяются коэффициенты соизмерения единичных значений полезности для каждой пары критериев
 - Экспертная оценка или анализ статистических данных
- Для каждого проекта определяются:
 - значение каждого критерия
 - ⇒ значение каждой функции полезности
 - ⇒ общая полезность
 - ⇒ выбирается проект, обеспечивающий наибольшую полезность

6.5. Моделирование инвестиционного риска

- Пример
 - Определение эффективного инвестиционного портфеля по критериям доходности и риска
- Метод Марковица
 - Риск измеряется дисперсией дохода
 - Учитывается взаимозависимость доходности различных видов вложений (ценных бумаг)
 - Исходные данные:
 - о доходности ценных бумаг в течение достаточно большого количества моментов времени

или

- о статистическом распределении доходности
- Предположение:
 - распределение вероятностей доходов по каждой ценной бумаге не зависит от времени (не имеет тренда)

Мат. ожидание дохода от ценной бумаги i: $\mathbf{V}_i = \sum_{t=1}^{r} \mathbf{V}_{it} / T$

Фактически наблюдаемые доходы в расчёте на рубль вложений

Дисперсия дохода от ценной бумаги
$$i$$
: $\sigma_i^2 = \left(\sum_{t=1}^T \boldsymbol{v}_{it}^2\right) - \boldsymbol{v}_i^2$

Ковариация доходов от ценных бумаг i и j: $c_{ij} = r_{ij} \sqrt{\sigma_i^2 \sigma_j^2}$

Дисперсия доходов от портфеля:
$$\sigma_0^2 = \sum_{i=1}^n \sum_{j=1}^n c_{ij} s_i s_j$$

Коэффициент парной корреляции по Пирсону

(подразумевается
$$\sum_{i=1}^{n} s_{i} = 1; s_{i} \geq 0, i = 1 \dots n$$
)

Доли ценных бумаг каждого вида в портфеле (*n* – число видов ц.б.)

Условия оптимальности:

$$\max \sum_{i=1}^{n} s_{i} v_{i}; \qquad \min \sigma_{0}^{2}$$

Множество Парето удобнее всего исследовать весовым методом