Principles of Corporate Finance

Seventh Edition

Richard A. Brealey Stewart C. Myers

Slides by Matthew Will

Chapter 8

Risk and Return

Copyright © 2003 by The McGraw-Hill Companies, Inc. All rights reserved

Topics Covered

- Markowitz Portfolio Theory
- Risk and Return Relationship
- Testing the CAPM
- CAPM Alternatives

- Combining stocks into portfolios can reduce standard deviation, below the level obtained from a simple weighted average calculation.
- Correlation coefficients make this possible.
- ◆ The various weighted combinations of stocks that create this standard deviations constitute the set of *efficient portfolios*.

Price changes vs. Normal distribution

Microsoft - Daily % change 1990-2001

Daily % Change

Standard Deviation VS. Expected Return

Investment A

Standard Deviation VS. Expected Return

Investment B

Standard Deviation VS. Expected Return

Investment C

Standard Deviation VS. Expected Return

Investment D

◆ Expected Returns and Standard Deviations vary given different weighted combinations of the stocks

Standard Deviation

- •Each half egg shell represents the possible weighted combinations for two stocks.
- •The composite of all stock sets constitutes the efficient frontier

Expected Return (%)

Standard Deviation

•Lending or Borrowing at the risk free rate (r_f) allows us to exist outside the efficient frontier.

Standard Deviation

Example Correlation Coefficient = .4

ABC Corp 28 60% 15%

Big Corp 42 40% 21%

Standard Deviation = weighted avg = 33.6

Standard Deviation = Portfolio = 28.1

Return = weighted avg = Portfolio = 17.4%

<u>Example</u> Correlation Coefficient = .4

ABC Corp 28 60% 15%

Big Corp 42 40% 21%

Standard Deviation = weighted avg = 33.6

Standard Deviation = Portfolio = 28.1

Return = weighted avg = Portfolio = 17.4%

Let's Add stock New Corp to the portfolio


```
ExampleCorrelation Coefficient = .3Stocks\sigma% of PortfolioAvg ReturnPortfolio28.150%17.4%New Corp3050%19%
```

```
NEW Standard Deviation = weighted avg = 31.80

NEW Standard Deviation = Portfolio = 23.43

NEW Return = weighted avg = Portfolio = 18.20%
```


<u>Example</u> Correlation Coefficient = .3

Portfolio 28.1 50% 17.4%

New Corp 30 50% 19%

NEW Standard Deviation = weighted avg = 31.80

NEW Standard Deviation = Portfolio = 23.43

NEW Return = weighted avg = Portfolio = <u>18.20%</u>

NOTE: Higher return & Lower risk

How did we do that? <u>DIVERSIFICATION</u>

Risk (measured as σ)

Return

Low Risk	High Risk
High Return	High Return
Low Risk Low Return	High Risk Low Return

Risk

Risk

SML Equation =
$$r_f + B(r_m - r_f)$$

Capital Asset Pricing Model

$$R = r_f + B (r_m - r_f)$$

CAPM

Testing the CAPM

Beta vs. Average Risk Premium

Testing the CAPM

Beta vs. Average Risk Premium

Testing the CAPM

Dollars

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

Consumption Betas vs Market Betas

Arbitrage Pricing Theory

Alternative to CAPM

Expected Risk

Premium =
$$\mathbf{r} - \mathbf{r}_f$$

= $\mathbf{B}_{\text{factor1}} (\mathbf{r}_{\text{factor1}} - \mathbf{r}_f) + \mathbf{B}_{\text{f2}} (\mathbf{r}_{\text{f2}} - \mathbf{r}_f) + \dots$

Return=
$$a + b_{factor1}(r_{factor1}) + b_{f2}(r_{f2}) + \dots$$

Arbitrage Pricing Theory

Estimated risk premiums for taking on risk factors
(1978-1990)

Factor	Estimated Risk Premium
	$(\mathbf{r}_{\mathrm{factor}} - \mathbf{r}_f)$
Yield spread	5.10%
Interest rate	61
Exchange rate	59
Real GNP	.49
Inflation	83
Mrket	6.36

