Lecture 10

SCP case study: The American agriculture industry

Introduction

- High correlation between the fraction of labor force engaged in agriculture and GDP per capita.
 - In poor nations, 50-80% work in agriculture
 - In rich countries, 2-4% work in agriculture
- Unique organization: Farms are mostly family-owned, rather than publicly listed firms.
- Farms typically operate as price takers.
- Productivity growth in US agriculture has exceeded that in the rest of the economy

Structure – Supply and demand

- Farmers must make substantial investments before production starts [sunk costs]
- Investments cannot be adjusted in the short run \rightarrow inelastic short-run supply
- Supply can shift unexpectedly due to weather and disease conditions

Structure – Supply and demand

- Demand for most farm commodities is price-inelastic: food is a necessity
- Unexpected supply or demand shocks lead to sharp price fluctuations
- Farmers face price risks in addition to yield risks

Structure

FIGURE 1-2 Annual Corn Prices Received by Iowa Farmers, 1970-2006

Structure

- Short-run supply is inelastic, but easy entry makes long-term supply curves elastic
- Rapid productivity growth → supply curves have shifted to the right
- Demand growth has been limited by low population growth
- As a consequence:
 - 1. Real prices for agricultural commodities have been decreasing
 - 2. Export markets have become increasingly important
- With the rise of exports, farmers face additional risk: exchange-rate risk, foreign macroeconomic risks, etc.

Structure

Trends in US farm structure

• The number of farms peaked at 6.8 million in 1935, and declined to 2.3 million in 1974 and 2.1 million in 2002

Trends in US farm structure

- Sharp restructuring of agriculture towards larger operations
- The median farm size has increased

Typical Acres Harvested ^a		

Family farms, profits and household income, 2003

	Family farms, by sales class (\$000)			
	<10	10-250	250-500	500+
Profit margin	-98.0	-13.3	10.5	18.0
% of farms showing loss	42.7	33.1	18.2	16.7
% of farms showing margin > 10%	21.6	30.3	50.6	60.1
Farm household income				
Mean household income (\$000)	61	64	106	222
Median household income (\$000)	45	49	83	119
Farm earnings (\$000)	-4	8	64	175
Non-farm earnings (\$000)	65	56	41	47

Large farms are more profitable than small farms

Variation in profitability

- Considerable variation in profitability, many small farms remain profitable:
 - 1. Risk variability (climate, natural disasters, price shocks)
 - 2. Skill disparities
 - Product innovation by small farms → niche markets through marketing, special products (kiwi fruit, tofu-variety soybeans etc.) and/or special product attributes (free-range chicken, organic vegetables etc.)

Structure: commodity markets

- Farmers are price takers in almost all commodity markets
- The same is not true of buyers: processors, packers and retailers → monopsony power tendencies
- Sources of monopsony power:
 - 1. High nationwide concentration (e.g. packers of fed cattle CR4 = 80%)
 - 2. High transport costs (e.g. fed cattle are shipped less than 160 km \rightarrow regional monopsony even if there are several national buyers)
 - 3. Perishability (e.g. livestock lose value when they are stored beyond their optimal weight \rightarrow time-constrained search for better deals)
 - 4. Specialization (e.g. a buyer's demand causes a farm to plant a highly specific variety tailored to the buyer's request \rightarrow asset specificity)
 - 5. Asymmetric information (buyers make hundreds of deals per day; sellers make a few deals per year)

Vertical linkages

- A large share of farmers rely on long-term contracts with a specific buyer, ranging from 10% for wheat to 91% for poultry and eggs
- Long-term contracts are more common when farmers face perishability and transport cost problems (→ fewer potential buyers)
- Prices may be set by the contract, and shift the risk price fluctuations

Conduct: Farmer cooperatives

- Farmers are price takers, but they buy from and sell to firms with growing market power.
- Inputs: machinery, seed, petroleum, pesticide...
- Industries processing farm commodities are increasingly concentrated.

Conduct: Farmer cooperatives

- Farmers seek pricing power by organizing cooperatives → attainment of market power is difficult as entry costs are low.
- Cooperatives have little market power over consumers, but are sometimes effective in countering the monopoly power suppliers and the monopsony of buyers.
- Because farmers are price takers, they are allowed to sell through cooperatives, violating the Sherman Act.
- Most cooperatives do not differentiate their products.

Performance

- High rates of agricultural productivity growth over a long period.
- 100 years ago, an American cow yielded 3,840 pounds of milk, while in 2006 it yielded 20,000 pounds!

	The subscription of the subscription of the	1010 1014	1015 1010	10/2 10/0	1003 1004	2001 2005
Crop	Measure	1910-1914	1945-1949	1905-1909	1982-1980	2001-2005
Corn	bu/acre	26.0	36.1	48.7	109.3	143.4
Wheat	bu/acre	14.4	16.9	25.9	37.1	40.8
Potatoes	cwt/acre	59.8	117.8	205.2	283.9	373.6
Sugar Beets	tons/acre	10.6	13.6	17.4	20.4	21.8
Cotton	lbs/acre	201.0	273.0	505.0	581.0	747.4
Soybeans	bu/acre	n.a.	19.6	24.2	30.7	39.4
Milk	lbs/cow	3,840	4,990	8,260	12,730	18,810

Performance

- Total factor productivity accounts for the quantity of all inputs that is used to produce a specific output
 - TFP growth per year in agriculture 1950-2004: 2.10%
 - TFP growth per year in private non-farm businesses 1950-2004: 1.15%
- Because of high TPF growth in agriculture:
 - Nominal farm product price increase 1980-2005: 15%
 - Overall price increase 1980-2005: 122%

Sources of technological change/innovations in agriculture

- Equipment: mechanical power replaced human/animal power; machines became faster and more reliable; IT allows better monitoring of production...
- 2. <u>Chemicals</u>: Chemical fertilizers replaced pesticides, herbicides and fungicides improved the control of weeds and diseases ...
- 3. <u>Genetics</u>: Plant breeding research created higher-yielding plants with better survival traits; livestock and poultry genetics have caused increased meat yields per animal ...

Sources of technological change/innovations in agriculture

- Farmers rarely develop the innovations themselves. Most are developed by researchers in the nonprofit sector.
- Early adopters of a technology derive only temporary benefits. Cost reductions increase supply, driving down prices.

Overall performance over time

- More efficient production over time.
- Larger farms have tended to be more efficient → gradual increase in concentration, but farming is still relatively decentralized in the US
- The real prices of most food products have decreased over time, which is partly due to process innovation in farming

Revision

Module structure

The SCP paradigm

SCP: Endogenous relationship?

- Conduct to structure? R&D, advertising, differentiation
- Performance to structure? Growth and changing market shares
- Performance to conduct? Profitability and capacity to invest in R&D, or cut prices

Concentration and profits in America

Figure 2: Firm Entry and Exit Rates, 1977–2013

Sources: Bureau of Economic Analysis; Federal Reserve; "Measuring and Managing the Value of Companies", 6th ed., McKinsey Corporate Performance Analytics, August 2015

*Excluding goodwill

Market power and welfare

Effect of market power	Cause	Consequence
Low quantity	Profit maximization	DWL (wrt <u>allocative</u> <u>efficiency</u>)
X-inefficiency	Complacent monopolist	Higher costs, TS loss
Natural monopoly	Economies of scale	Lower costs, larger TS
Rent seeking	Effort to maintain/acquire market power	Waste of resources, rent dissipation

Market power and welfare

- Application to <u>internet monopolies</u>
- Does the internet favour such quasi-monopolies?
- Are digital monopolies less harmful than traditional monopolies?

Market definition

• Relevant product market

CES\CED	+	0	-
_	Same market	Same market	Same market
0	Same market	Different markets	Different markets

 $CED = \frac{\Delta Q_1^{\nu}}{\Delta P_2} \frac{P_2}{Q_1^D}$ $CES = \frac{\Delta Q^{s_1}}{\Delta P_2} \frac{P_2}{Q^{s_1}}$

Market definition

- Relevant geographic market
 - CED and CES analysis
- Limitations of market definition
 - Market definition remains arbitrary
 - Critical values of CED, CES?
- Importance of market definition

Measures of concentration

Determinants of concentration

More

concentration

Less

concentration

Gibrat's law

Entry barriers: Economies of scale Absolute cost advantages Product differentiation Switching costs Network effects Regulations

Sunk costs: endogenous or exogenous

Industry life cycle

Determinants of concentration

Source: Adapted from Pratten (1988), Table 5.5, pp. 88-92, © European Union, 1995-2012.

Views on SCP

Chicago: Efficiency Profitability Firm Concentration School

Issue 1: Measurement of profitability Tobin's Q, ARP, price-cost margin

Issue 2: Testing the two paradigms

Structure and profitability

	relationship	Collusion	Efficiency
Concentration and profits	+	V	
	0		V
Firm size and profits	+		V
	0	V	
Firms effect minus industry effect	+		V
	-	V	
POP firm level			V
POP industry level		V	

NEIO

Conduct

Market structure and advertising

Keywords: AED/PED, impact of advertising on market shares

Empirical evidence: inverted U-shaped relationship between advertising and concentration

Market structure and advertising

Welfare and advertising

Most cases: higher quantity, lower consumer surplus, higher producer surplus

R&D and market structure

R&D and market structure

Innovation protection

Product differentiation

Exam structure

- 1.5 hour
- Secton A: Answer ONE question from TWO.

 Two essay questions
- Section B: Answer ONE question from THREE.
 Two essay questions + one conceptual question
- All questions carry equal marks.
- Broad questions
 - Theoretical explanations
 - Empirical evidence to support your claims
- Poor answers
 - No intuition provided for the theory
 - No empirical evidence or example

Before you answer...

- Choose to answer only those questions you fully
 - Do not reproduce prepared essays without regard to what the question asks

Your Answer...

- Should have a clear structure
- The Introduction should act as a signpost to the reader
- The Main Body of argument should follow, with evidence, examples etc used to support statements
- A (brief) conclusion should end the essay

Good Practice

- Define technical terms as you introduce them, especially any such terms that are specified in the question
- Use examples whenever possible to support arguments
- Credit is usually given for examples and evidence that goes beyond lecture notes

Use equations, graphs, figures etc where relevant

More Good Practice

- Explain diagrammes or figures
- Label graph axes etc.
- Equations/figures etc that are merely reproduced without comment do not improve answers

• There is no need to do a list of references

Bullet Points Answers?

- Reproducing bullet points does not constitute a good answer, even if the points are relevant
- Try to write a coherent explanation
- If you really run out of time on the last question, brief notes indicating how the answer should have

Final Considerations

• Where contradictory arguments exist, it may be useful to indicate their respective strengths.

• Personal opinions are fine, but cover the received