Лекция №4. История естествознания: Формирование механистической картины мира

Давыдов Виктор Николаевич проф. каф. современного естествознания и экологии ИНЖЭКОН

Возрождение наук в Европе

В 1-2 веках н.э. распались античные цивилизации и прекратили существование натурфилософские школы.

Возрождение наук в Европе началось в середине X века с установлением христианства, возникновением городов, развитием ремесел.

Принципы средневекового познания

- 1. Авторитета (схоластическая традиция).
- 2. Ритуала (герметическая традиция).
- 3. Личного опыта (эмпирическая традиция).

1. Схоластическая традиция

Схоластика (греч. scholastikos — школьный, ученый) рассматривала все явления с точки зрения их соответствия понятиям о добре, зле, истине, Боге и т.п.

Предполагала: мир можно познавать чисто логически, без обращения к опыту.

Пример: испанский теолог и алхимик Раймонд Луллий (1235-1315) считал, что задачей науки является создание универсального способа открытия новых истин (великого искусства).

Раймонд Луллий (1235-1315)и его машина открытий

Генератор речей построенный по принципу машины открытий Луллия

универсальный код речей

.Объединив произвольно часть фразы из столбца 1 с любой частью фразы последовательно из столбцов II, III, IV, получите универсальный текст. Количество комбинаций — 10000, достаточно на 40 минут произнесения речи.

I I	- II	III	IV
Говарищи!	реализация намеченных плановых заданий	играет важную роль в форми- ровании	существенных финансовых и ад- министративных условий
С другой тороны	рамки и место обучения кадров	требуют от нас анализа	дальнейших направлений развития
Равным образом	постоянный количественный рост и сфера нашей активности	требуют определения и уточнения	системы массового участия
Не следу- ет, однако, забывать, это	сложившаяся структура организации	способствует подготовке и реализации	позиций, занимаемых участниками в огношении поставленных задач
Гаким образом	новая модель организационной деятельности	обеспечивает широкому кругу (специалистов) участие в форми- ровании	новых предложений
Повседне- вная практика показывает, что	дальнейшее развитие различных форм деятельности	позволяет выполнить важ- ные задания по разработке	направлений прогрессивного развития

ВАЖНЕЙШАЯ ПРОБЛЕМА СХОЛАСТИКИ – ПРОТИВОРЕЧИЕ МЕЖДУ ВЕРОЙ И РАЗУМОМ

Попытка разрешения: знаменитый теолог средневековья Фома Аквинский: Связал христианское учение с философией Аристотеля

Фома Аквинский (1225-1274)

Истины Бога сверхразумны. Задачей естественных наук является детализация и конкретизация положений, содержащихся в Библии.

РОЛЬ СХОЛАСТИКИ В РАЗВИТИИ НАУКИ

Схоластика развивала логическое и теоретическое мышление, а потому способствовала развитию математики и классической механики.

На закате Средневековья сделалась тормозом развития естествознания.

2. Герметическая традиция

Ритуализированность религиозной и светской жизни средневековья была перенесена и на познание.

Получила название по имени легендарного Гермеса Трисмегиста (Трижды Величайшего), написавшего на греческом языке во 2-3 веке ряд трактатов.

Гермес Трисмегист Мозаика на полу кафедрального собора Сиены, 1480-е годы

Принципы герметической традиции

- 1. Взаимосвязь всего со всем.
- 2. Убежденность, что воздействием на часть можно изменить целое.
- 3. Рассмотрение мира как живого организма.
- 4. Возможность безграничного влияния на события свехъестественных сил, присущих не только Богу, но и некоторым людям.

Воплощения герметической традиции

Алхимия, медицина, астрология и другие формы средневековой культуры.

Рабинович В.Л. Алхимия как феномен средневековой культуры.

- М.: Наука, 1979.

3. Эмпирическая традиция

Основывалась на философском течении - номинализме (от латинского nomem - имя).

Номинализм: единственная реальность - единичные, индивидуальные вещи и путь к истине лежит в чувственном познании.

ЗНАЧЕНИЕ ОПЫТА

Яркий представитель эмпирической традиции английский монах Роджер Бэкон (1214-1294г.г.). «Есть два способа познания: через аргументы и через опыт» — утверждал он.

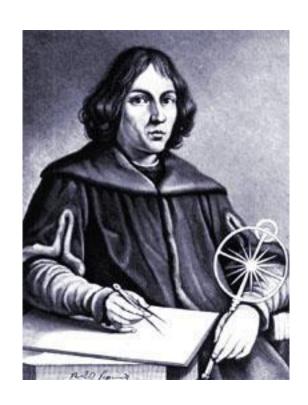
Первый в Европе приготовил черный порох, изобрел очки, высказал идеи создания летательных аппаратов, подводной лодки, зажигательных зеркал и т.п.

Роджер Бэкон (1214-1294)

ЭПОХА ВОЗРОЖДЕНИЯ

С XII - XIII века начинается эпоха Возрождения, расцвет которой приходится на XIV – XV века. Особенности культуры Возрождения:

Особенности культуры Возрождения: антропоцентрическое мировоззрение, торжество разума, гуманизм.


Подготовила почву для становления "зрелой" науки.

КОПЕРНИКАНСКАЯ РЕВОЛЮЦИЯ

Польский астроном Николай Коперник между 1505 и 1507 годами опубликовал в «Малом комментарии» принципиальные основы гелиоцентрической модели мира, позднее в 1543 году полное изложение своей теории в книге "О вращении небесных сфер".

В центре мира Коперник поместил Солнце, вокруг которого движутся планеты и Земля со своим спутником Луной. На огромном расстоянии от них находится сфера звезд.

Николай Коперник (1473-1543)

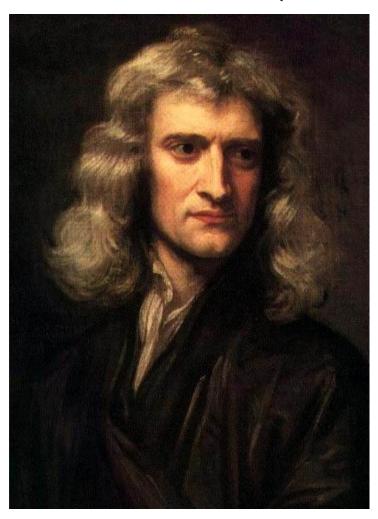
ИСТОРИЧЕСКОЕ ЗНАЧЕНИЕ ТЕОРИИ КОПЕРНИКА

- 1. Подрыв первой научной картины мира, основой которой была геоцентрическая модель.
- 2. Способствовала становлению новой механистической картины мира.
- 3. Явилась предпосылкой к созданию классической механики.

ИСТОРИЧЕСКОЕ ЗНАЧЕНИЕ ТЕОРИИ КОПЕРНИКА

- 4. Способствовала разработке новой методологии познания: сущность может быть понята только после изучения явления, а не чисто умозрительно).
- 5. Позволила провести реформу календаря.
- 5 октября, которое стало 15 октября 1582 г., по инициативе Папы Григория 13 был введен новый григорианский календарь.

HOBOE BPEMЯ (XVII-XVIII В.)


Формируется убеждение, что природные явления, полностью подчиняются механическим закономерностям. Природа рассматривается как громадная машина.

Задача естествознания — определение количественно измеримых параметров природных явлений и установление между ними функциональных зависимостей, выраженных математическим языком.

КЛАССИЧЕСКАЯ МЕХАНИКА

«Математические начала натуральной философии» Исаака Ньютона, 1687 г. Определены основные понятия механики масса, сила, количество движения, пространство, время, развито учение Галилея об относительности движения, сформулированы законы динамики и законы сохранения. Для изучения природы движения разработаны дифференциальное и интегральное исчисление.

Исаак Ньютон (1642-1727)

ЗАКОН ВСЕМИРНОГО ТЯГОТЕНИЯ

Опираясь на работы предшественников, в том числе исследования Кеплера и Гюйгенса, Ньютон открывает закон всемирного тяготения.

Согласно Ньютону порядок в движении планет определяет сила тяготения. Первотолчок для их движения создал Бог.

Работы Ньютона стали фундаментом механистической картины мира, которая получила свое окончательное завершение к концу XVIII века.

ОСНОВНЫЕ ИДЕИ МЕХАНИСТИЧЕСКОЙ КАРТИНЫ МИРА

- 1. Мир дискретен и представляет совокупность взаимодействующих тел, состоящих из атомов.
- 2. Все тела находятся в вечном движении в пространстве, заполненном упругой средой эфиром. Благодаря эфиру осуществляется их взаимодействие на далеких расстояниях.
- 3. Пространство абсолютно, трехмерно, однородно и изотропно. Время абсолютно, однородно, однонаправленно и необратимо. Пространство и время не связаны между собой.

ОСНОВНЫЕ ИДЕИ МЕХАНИС-ТИЧЕСКОЙ КАРТИНЫ МИРА

- 4. Положение тела в пространстве в любой момент времени можно указать с помощью системы отсчета и координат. Специальные преобразования позволяют перейти от одной инерциальной системы отсчета к другой.
- 5. Тела природы обладают внутренним свойством двигаться прямолинейно и равномерно. Взаимодействие тел носит гравитационный характер, количественно определяется законом всемирного тяготения и распространяется бесконечно быстро.

ОСНОВНЫЕ ИДЕИ МЕХАНИСТИ-ЧЕСКОЙ КАРТИНЫ МИРА

- 6. Энергия, импульс и момент количества движения тела могут принимать непрерывный ряд значений.
- 7. Все тела природы стремятся к устойчивому состоянию с минимумом энергии.
- 8. Все явления связаны жесткими причинноследственными связями, которые предопределяются законами механики.
- 9. Законы механики универсальны и применимы к любым процессам.

Понятие о химическом элементе

Английский ученый Роберт Бойль (1627-1691) Книга «Химик-скептик», 1661г.

«Свойства тел не носят абсолютного характера, они зависят от взаимоотношений между материальными компонентами, или химическими элементами, каковыми являются простейшие тела, представляющие собой предел разложения на более простые части».

Химическая революция Лавуазье

В 1775 г. он выступил с докладом в Академии наук, в котором утверждал, что воздух является не простым веществом, а смесью двух газов. Одна пятая часть воздуха соединяется с горящими или ржавеющими предметами, переходит из руд в древесный уголь и необходима для жизни.

Лавуазье назвал этот газ кислородом, т.е. порождающим кислоты, так как полагал, что кислород — необходимый компонент всех кислот.

Закон действующих масс (1867 г.)

Норвежские ученые Като Максимилиан Гульдберг (1836-1902) и Петер Вааге (1833-1900) предположили, что массы реагирующих веществ определяют скорость и направление химических процессов.

Использована аналогия с классической механикой, где массы являются важным фактором механического перемещения тел.

Уточнение закона действующих масс

Голландский химик Вант-Гофф выяснил, что скорость и направление реакции определяется не массами веществ, а их концентрациями.

$$aA + bB \rightarrow cC$$
,
Скорость реакции:
 $v = k \cdot c(A)^a \cdot c(B)^b$

Темы коротких сообщений

- 1. Раймонд Луллий и его машина открытий;
- 2. Жизнь и труды Фомы Аквинского».
- 3. Жизнь и труды Роджера Бэкона.
- 4. Николай Коперник и его гелиоцентрическая система.
- 5. Жизнь и труды Исаака Ньютона.
- 6. Жизнь и труды Антуана Лавуазье.

Благодарю за внимание!