
e = mc²

Механические колебания Величины, характеризующие колебательное движение Математический и пружинный маятник

g≈9,8 m/s

Вопросы

• Кинетическая энергия.

Кинетическая энергия

$$\mathring{A}_{\hat{e}} = \frac{mV^2}{2}$$

• Потенциальная энергия.

Потенциальная энергия

$$\mathring{A}_n = mgh \qquad \qquad \mathring{A}_n = \frac{kx^2}{2}$$

• Полная механическая энергия.

Полная механическая энергия

$$\mathring{A} = \mathring{A}_{\hat{e}} + \mathring{A}_{\ddot{r}}$$

• Закон сохранения энергии

Закон сохранения энергии

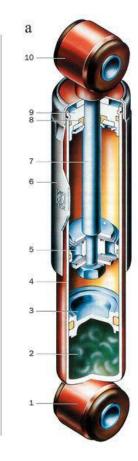
$$\mathring{A}_{\hat{e}} + \mathring{A}_{\ddot{i}} = const$$

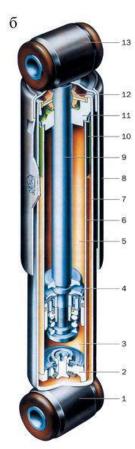
• Второй закон Ньютона

Второй закон Ньютона

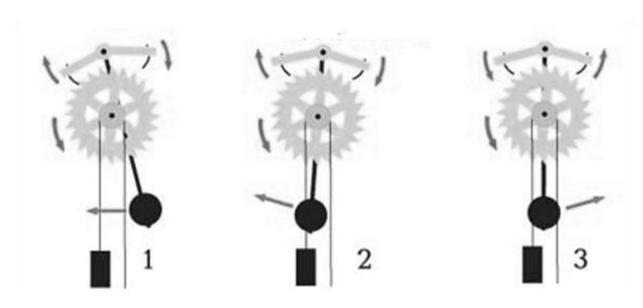
$$F = ma$$

 Колебания – это движение, которое точно или приблизительно повторяется через определённый промежуток времени.




Вынужденны Свободные Автоколебани Незатухающие Затухающие колебания Незатухающие колебания под за счёт колебания за счёт действием автоматической подачи первоначального запаса энергии(под периодически энергии в систему. действием внутренних изменяющейся Период зависит от сил). Период колебания размеров и свойств внешней силы. Период колеблющейся определяется зависит от периода внешней силы. размерами и системы. свойствами колеблющейся системы.

Свободные колебания

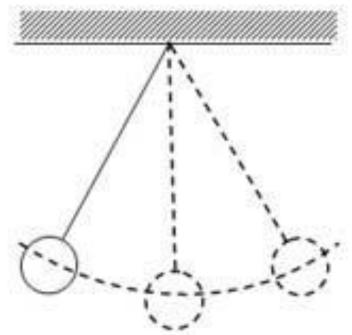


Вынужденные колебания

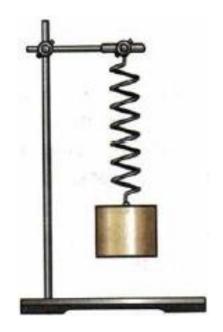
Автоколебания

Применение.

Величины характеризующие колебательное движение.


- Т период времени одного полного колебания;
- n частота, число колебаний в единицу времени;
- X_{max} амплитуда, максимальное смещение от положения равновесия.

$$\dot{O} = \frac{1}{N}$$
 $\dot{O} = \frac{1}{N}$


Математический маятник – материальная точка, подвешенная на тонкой нерастяжимой нити.

$$\dot{O} = 2\pi \sqrt{\frac{l}{g}}$$

Пружинный маятник - это тело массой m, колеблющееся на пружине жёсткостью k.

$$\grave{O}=2\pi\sqrt{\frac{m}{k}}$$

Вопросы:

- 1) Изменится ли период математического маятника на Марсе?
- 2) Изменится ли период пружинного маятника на Марсе?
- 3) В какой точке (положение равновесия, максимальное отклонение) кинетической энергии колеблющегося тела максимальна?
- 4) Математический маятник за 10 секунд совершил 20 колебаний. Найти период колебаний?
- 5) Масса груза, колеблющегося на пружине, увеличилась в 4 раза. Как изменился период?

Правильные ответы:

- 1) Да
- 2) Hет
- 3) Положение равновесия
- 4) 0,5
- 5) Увеличилась в 2 раза

Условие задачи.

 Какое значение ускорения свободного падения получил ученик при выполнении лабораторной работы ,если маятник длинной 80см совершил за 1минуту 34 колебания?

Домашнее задание:

- 1 Выучить основные законы и определения, учебное пособие «Физика». В.П.Омельченко. стр.63-65..
- 2 Решить задачи №419,420,425 «Сборник задач и вопросов по физике». «Задачник». А.П. Рымкевич. стр.60.
- 3 Подготовится к лабораторной работе.

Благодарю за внимание!