
Электрический ток в электролитх

Жидкости по степени электропроводности делятся на:

- 🗉 🛮 диэлектрики (дистиллированная вода)
- проводники (электролиты –растворы солей, щелочей и кислот)
- полупроводники (расплавленный селен)

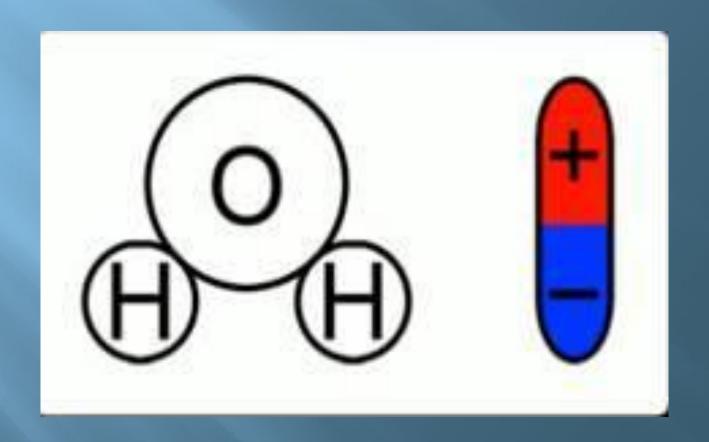
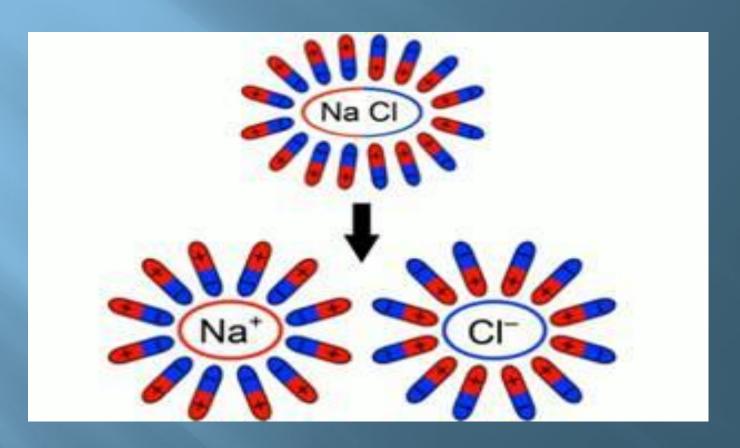
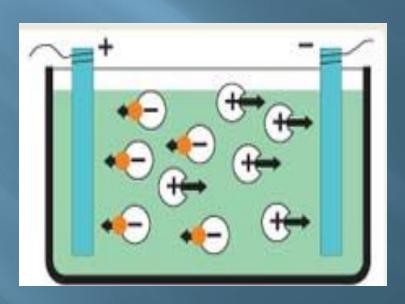

 Для лучшего понимания процесса проводимости тока в жидкостях, можно представить следующий опыт: В ванну с водой поместили два электрода, подключенные к источнику тока, в цепи в качестве индикатора тока можно взять лампочку. Если замкнуть такую цепь, лампа гореть не будет, а это значит, что в цепи есть разрыв, и вода сама по себе ток не проводит. Но если в ванную поместить некоторое количество – поваренной соли – и повторить замыкание, то лампочка загорится. Это значит, что в ванной между катодом и анодом начали двигаться свободные носители заряда, в данном случае ионы.

Схема опыта

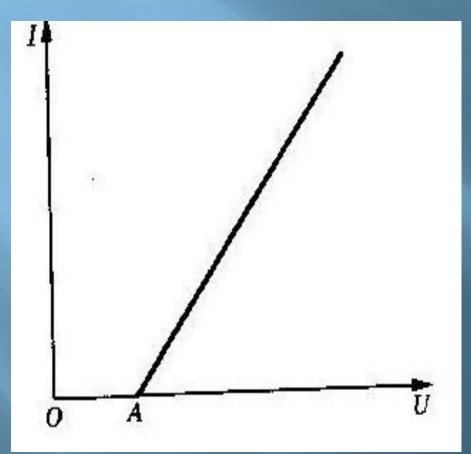
- Откуда во втором случае берутся свободные заряды? Как было сказано в одном из предыдущих уроков, некоторые диэлектрики – полярные. Вода имеет как раз-таки полярные молекулы (рис. 2).
- Рис. 2. Откуда во втором случае берутся свободные заряды?


Откуда во втором случае берутся свободные заряды?

Полярность молекулы воды

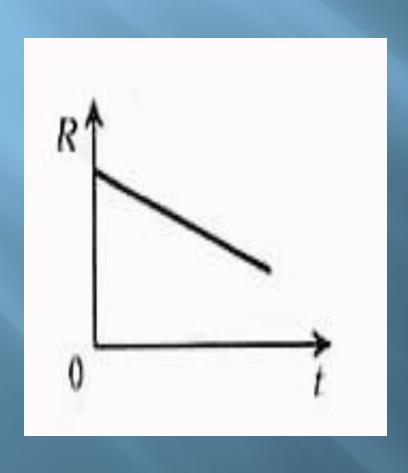

При внесении в воду соли молекулы воды ориентируются таким образом, что их отрицательные полюса находятся возле натрия, положительные – возле хлора. В результате взаимодействий между зарядами молекулы воды разрывают молекулы соли на пары разноименных ионов. Ион натрия имеет положительный заряд, ион хлора отрицательный (рис. 3). Именно эти ионы и будут двигаться между электродами под действием электрического поля.

охема образования свободных ионов


 Именно эти ионы и будут двигаться между электродами под действием электрического поля. Под действием электрического поля ионы приобретают упорядоченное движение, т.е. отрицательные ионы перемещаются к положительному электроду – аноду, а положительные ионы к отрицательному электроду – катоду.

Характер движения свободных зарядов при наличии электрического поля.

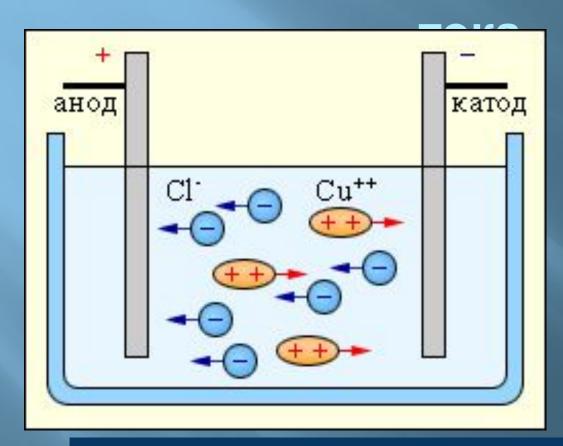
Ток в электролитах - упорядоченное движение положительных и отрицательных ионов


Вольт - амперная характеристика тока в данной среде.

I=(U-Uo)/R

- С ростом напряжения ток растет, т.к. ионы движутся быстрее.
- С ростом температуры сопротивление падает

Зависимость сопротивления электролита от температуры


$$P = \rho_0 (1 + \alpha t)$$

$$R = R(1 + \alpha t)$$

$$\alpha < 0$$

где альфа - температурный коэффициент электролитов

Физическое явление сопровождающее протекание

Ионы хлора – анионы, ионы медикатионы

Явление выделения на электродах веществ, входящих состав электролита, при протекании через него электрического тока, называется электролизом.

В первой работе по электролизу 1833 года Фарадей представил свои два закона электролиза. В первом речь шла о массе вещества, выделяющегося на электродах. Здесь роль коэффициента пропорциональности играет величина – электрохимический эквивалент. Это табличная величина, которая уникальна для каждого электролита.

Второй закон Фарадея непосредственно касается измерения электрохимического эквивалента через другие константы для конкретно взятого электролита:

Здесь: - молярная масса электролита; - элементарный заряд; - валентность электролита; - число Авогадро.

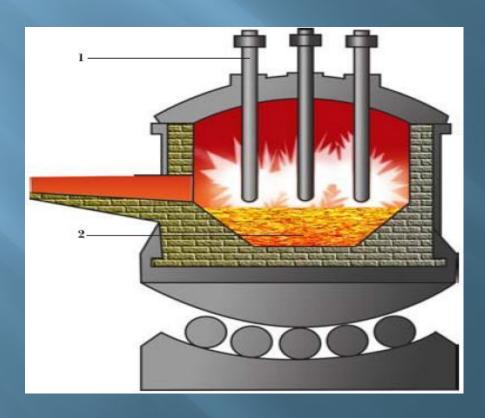
Физическое явление сопровождающее протекание тока.

Закон электролиза

$$m = kI\Delta t$$

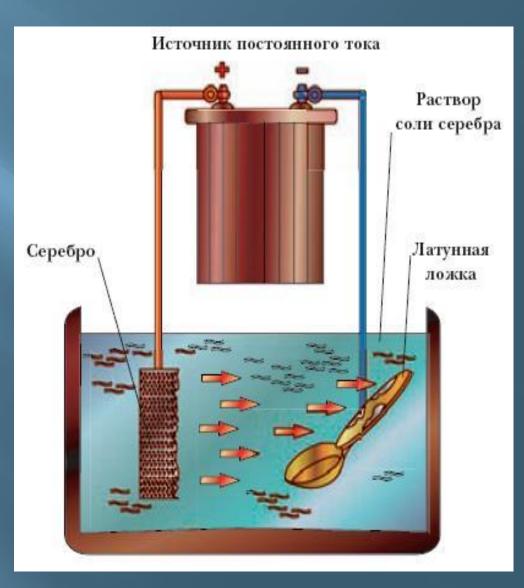
k - электрохимический эквивалент

$$m = \frac{M}{n} \cdot \frac{1}{e \cdot N_A} \cdot I \cdot \Delta t$$


k – электрохимический эквивалент

$$e \cdot N_A = F$$
 – число Фарадея

$$F = 9,65 \cdot 10^4 \, Kn / моль$$


Применение электролиза Электрометаллургия

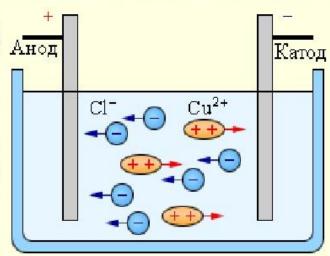
получение чистых металлов (Al, Na, Mg, Be) при электролизе расплавленных руд.

Гальваностегия

Декоративное или антикоррозийное покрытие металлических изделий тонким слоем другого металла (никелирование, хромирование, омеднение, золочение, серебрение).

Гальванопластика

электролитическое изготовление металлических копий, рельефных предметов.


Электрический ток в жидкостях

Электролиз — процесс выделения на электроде вещества, связанный с окислительно-восстановительными реакциями

- от температуры;
- * от рода раствора

Закон электролиза Фарад

 $m = k*I*\Delta t$,

к- электрохимический эквивалент

Выводы:

- 1. При растворении под влиянием электрического поля полярных молекул воды происходит распад молекул солей, кислот и щелочей на ионы этот процесс называется электролитической диссоциацией.
- 2. Носителями свободных зарядов таких жидкостей являются положительно и отрицательно заряженные **ионы**.

Главное

Электрический ток в жидкостях

Применение электролиза:

- Определение заряда электрона;
- ≻Гальваностегия —никелирование, серебрение;
- Гальванопластика;
- Электронатирание;
- Кислород и водород в промышленности;
- Очистка металлов;
- Электрополировка

- 1.Получение чистых металлов (рафинирование меди, добывание алюминия).
- 2.Гальваностегия-покрытие поверхности одного металла тонким слоем другого (никелирование,хромирование...)
- 3.Гальванопластика-получение копий предмета с рельефного изображения (чеканка монет, медалей, полиграфическая промышленность).

