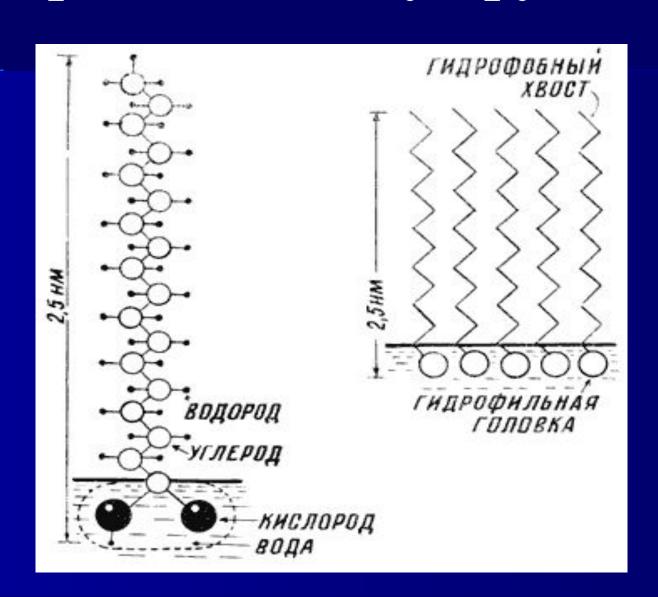


План проведения исследовательской работы

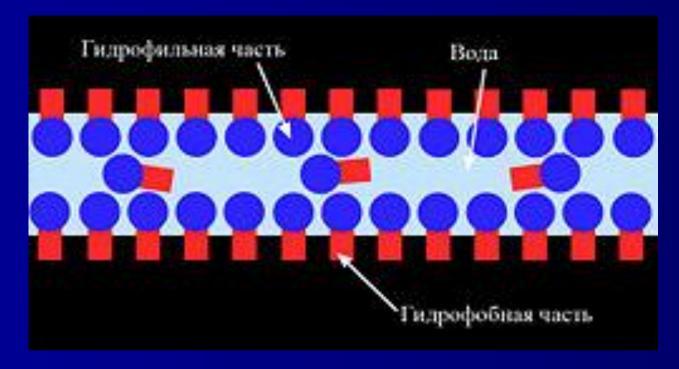
1.Анализ условия:

Цель: исследовать зависимость распределения капе в при лопанье мыльного пузыря от различных параметров:

- -концентрации мыльного раствора,
- размера (диаметра) пузыря,
- высоты, на которой лопнул мыльный пузырь
- 2. Объект исследования: мыльный пузырь
- **3. Предмет исследования**: число капель, образованных при лопанье мыльного пузыря.
- 4. Физическая модель для образования мыльных пузырей.
- 5. Ознакомление с теоретическим материалом.
- 6.Выдвижение своих гипотез.
- 7. Проведение эксперимента.
- 8. Описание данного явления на основе опытов и научного эксперимента.
- 9. Вывод.
- 10.Подготовка презентации.

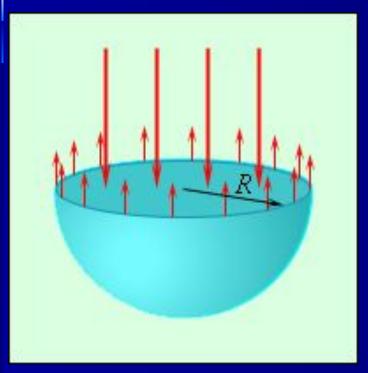

Что такое мыльный пузырь?

Мыльный пузырь — тонкая пленка мыльной воды, которая формирует шар с переливчатой поверхностью.


Пленка пузыря состоит из тонкого слоя воды, заключенного между двумя слоями молекул поверхностно активного вещества, чаще всего мыла.

Строение молекул-русалок

Прямыми измерениями было установлено, что поверхностное натяжение воды понижается в два с половиной раза при добавлении мыла:


от $7 \cdot 10^{-2 \text{Дж}} / \text{M}^2$ до $3 \cdot 10 - 2 \text{Дж/M}^2$

Коэффициент поверхностного натяжения о может быть определен как модуль силы поверхностного натяжения, действующей на единицу длины линии, ограничивающей поверхность о = Fu/2L

Условие равновесия для мыльных пузырей

Сечение сферической капли

Избыточное давление внутри мыльного пузыря в два раза больше, чем у сферической капли, так как пленка имеет две поверхности:

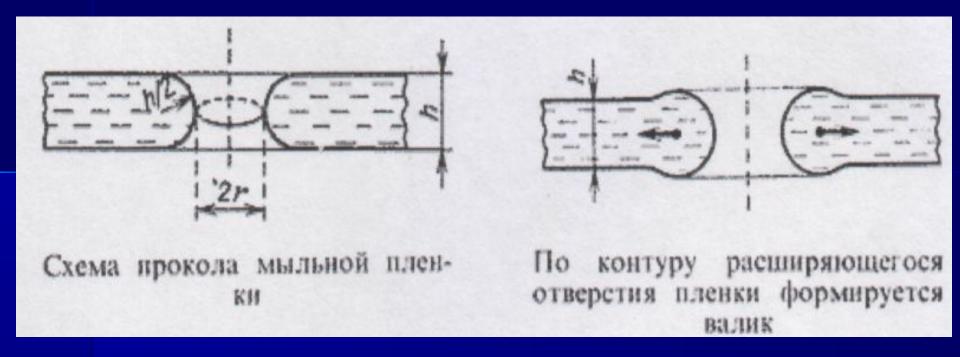
$$\Delta p = 4\sigma / R$$

Условие равновесия сил поверхностного натяжения и сил избыточного давления для мыльных пузырей:

$$\sigma 4\pi R = \Delta p\pi R2$$

Силы натяжения мыльного пузыря формируют сферу потому, что сфера имеет наименьшую площадь поверхности при данном объеме.

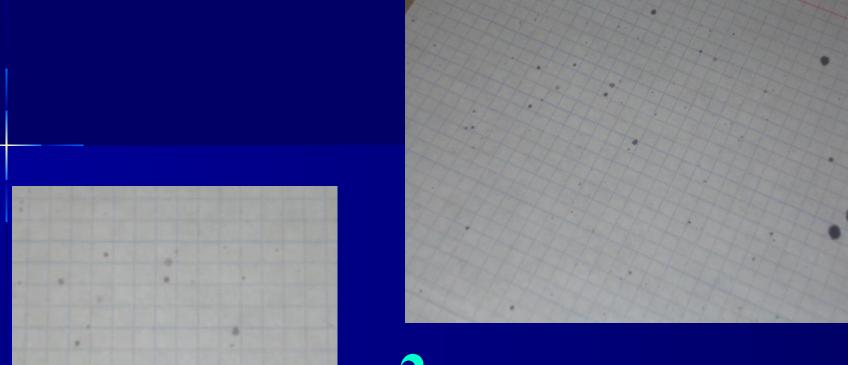
С поверхностью жидкости связана <u>свободная</u>
<u>энергия</u>


 $E = \sigma S$

где σ — коэффициент поверхностного натяжения, S — полная площадь поверхности жидкости. Так как свободная энергия изолированной системы стремится к минимуму, то жидкость (в отсутствие внешних полей) стремится принять форму, имеющую минимальную площадь поверхности.

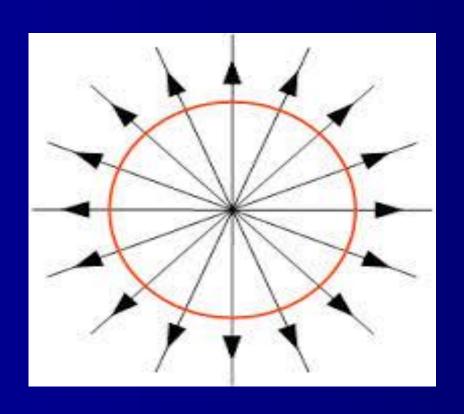
Теория разрушения мыльного пузыря

Вследствие большого поверхностного натяжения утончившееся место пленки потянет в свою сторону жидкость из других, более толстых частей. Этим будет вновь достигнута одинаковая толщина пленки на всем протяжении, и опасность разрыва пленки исчезнет


Поверхность характеризуется двумя радиусами кривизны: r и h/2.

Для пузыря будут смертельными те пробоины, у которых r > h/2, в остальных случаях пробоина будет залечиваться, схлопываться.

Постановка эксперимента



2 эксперимент

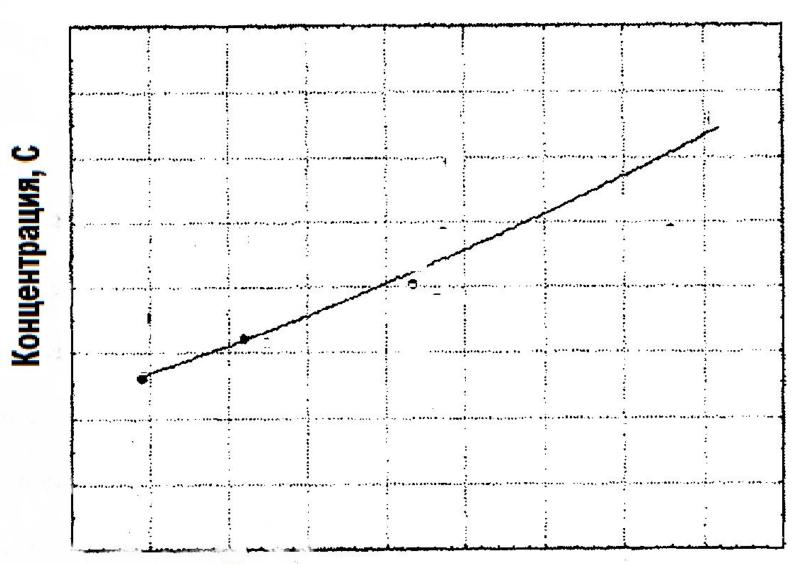
1 эксперимент

Схема лопанья мыльного пузыря

Результаты эксперимента

№ опыта	Количество капель								
	1	2	3	4	5	6	7	8	9
Меньший мыльный раствор	16	17	17	20	15	18	15	26	21
Больший мильный раствор	25	28	29	18	32	32	20	22	32

Среднее значение 1)18; 2) 26.


№ опыта	Количество капель									
	1	2	3	4	5	6	7	8	9	
Меньший размер пузыря	18	15	13	25	12	12	32	29	18	
Больший размер пузыря	49	33	39	43	32	20	28	40	25	

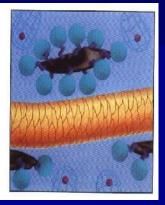
Среднее значение 1)20; 2)36

№ опыта	Количество капель									
	1	2	3	4	5	6	7	8	9	
h=0.4 m	18	19	33	13	39	35	29	43	40	
Ha	13	16	19	15	17	19	20	15	22	
высоте больше 1 m										

Среднее значение 1)29 2)16.

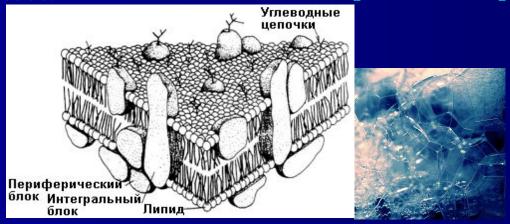
Калибровочная прямая - график зависимости кол-ва капель от концентрации мыльного раствора

Кол-во капель на поверхности, п



Чем больше размер мыльного пузыря, тем больше образуется капель на поверхности. Мы это доказали экспериментально, просмотрев количество капель в нескольких экспериментах: мыльный пузырь диаметром в 4 см; мыльный пузырь диаметром около 15 см.

Для чего нужны мыльные пузыри?



Механизм удаления грязи с помощью мыльной воды

В метрологии и аэронавтике

Живые клетки в некоторых процессах сродни мыльным пузырям

Полимеры Красители

«Микрореакторы» внутри мицелл

Медикаменты

Выводы

Распределение капель на полу при лопанье мыльного пузыря зависит от:

- 1) концентрации мыльного раствора,
- 2) диаметра самого мыльного пузыря,
- 3) местоположения мыльного пузыря от пола.

Спасибо за внимание!