*Электроемкость. Конденсатор.

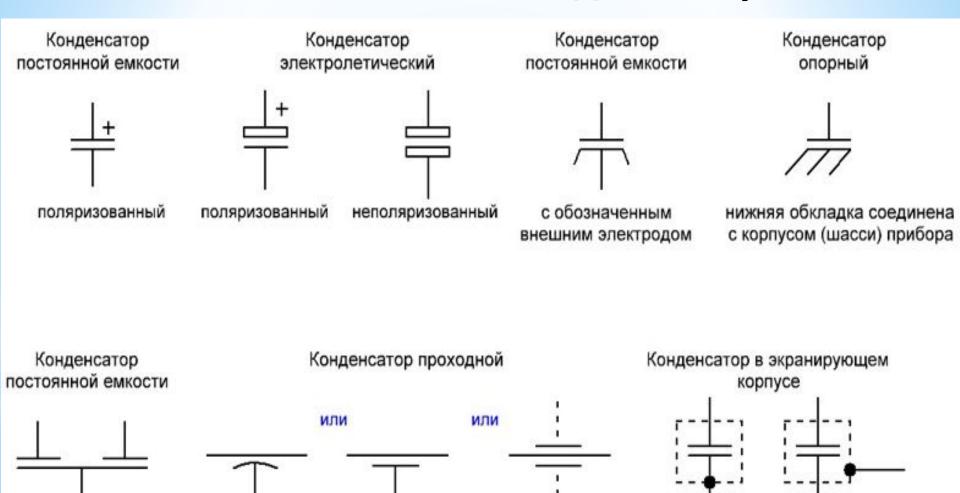
Электроемкость проводников - это физическая величина, характеризующая способность проводника или системы проводников накапливать электрический заряд

Формула нахождения электроемкости:

$$C = q/U$$

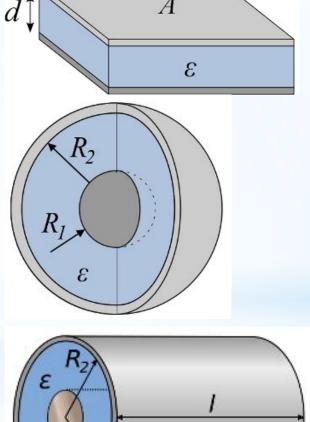
Где C- электроемкость q-электрический заряд(1Кл) U-потенциал(1В) * Конденсатор (от <u>лат.</u> condensatio — «накопление») — устройство для накопления <u>заряда</u> и энергии электрического поля.

Конденсаторы различаются:

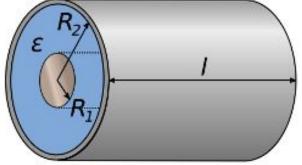

По виду диэлектрика; По форме обкладок; По величине емкости.

двухсекционный

Величины емкости конденсатора:


http://sxemotehnika.ru

дуга обозначает наружную обкладку (корпус)


*Виды конденсаторов по форме обкладок:

Плоские

Сферические

* Цилиндрические

*Типы конденсаторов по виду диэлектриков:

С газообразным

диэлектриком: вакуумные, газонаполненные, с воздушным

диэлектриком.

С оксидным

Диэлектриком: помехоподавляющие, пусковые, импульсные, высокочастотные, неполярные, общего назначения.

С неорганическим

Диэлектриком: низковольтные, высоковольтные,

помехоподавляющие, нелинейные.

С органическим

Диэлектриком: низковольтные низкочастотные, низковольтные высокочастотные, высоковольтные постоянного напряжения, высоковольтные импульсные,

дозиметрические, помехоподавляющие.

Idspund.ru

*По характеру защиты от внешних воздействующих факторов конденсаторы выполняются: незащищенными, защищенными, неизолированными, изолированными, уплотненными и герметизированными.