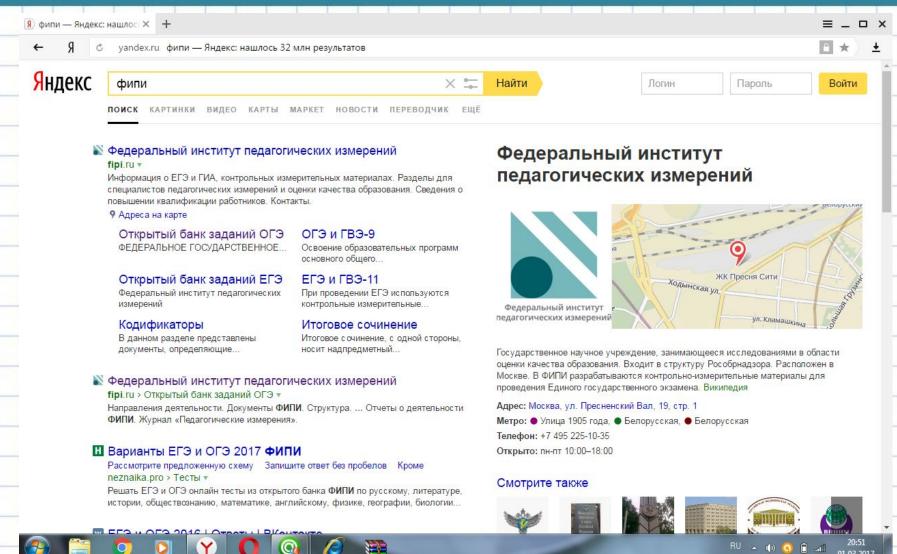
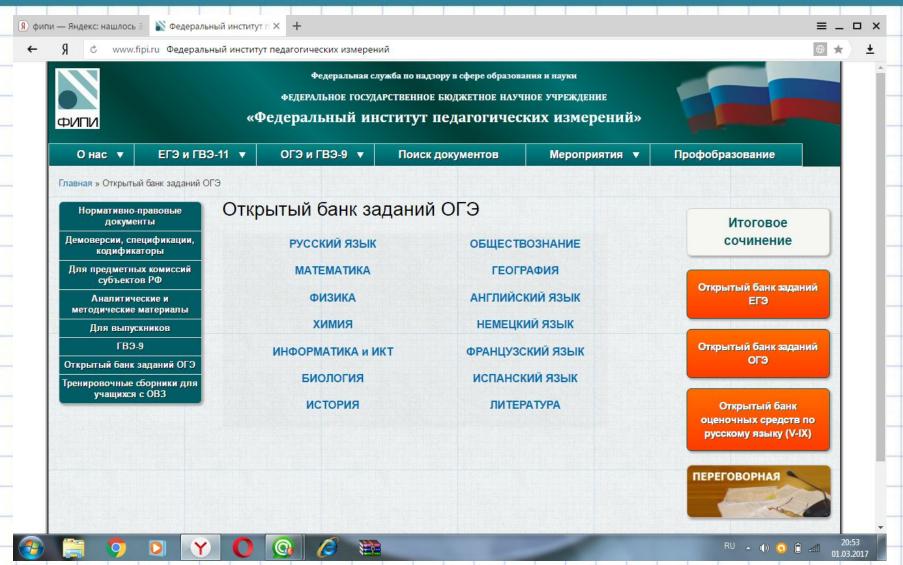


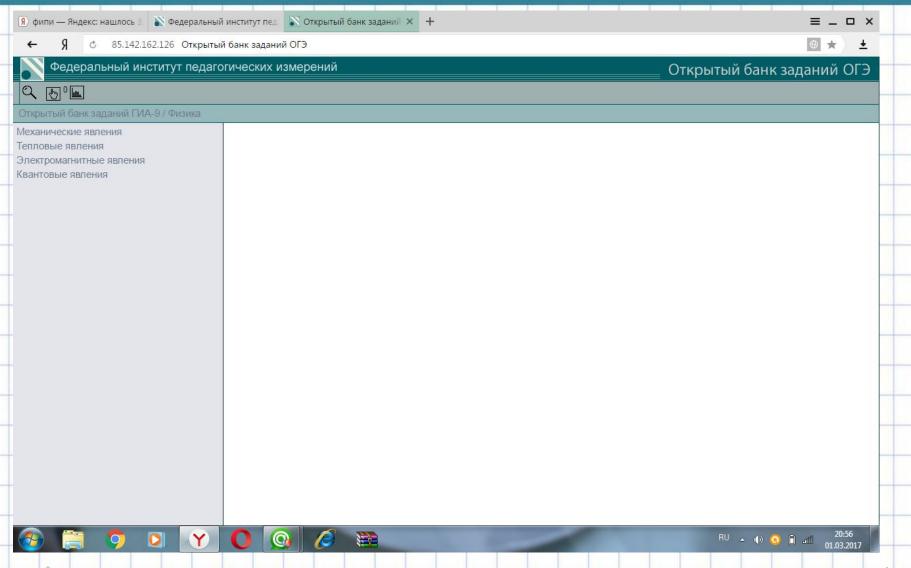
Семинар — практикум по решению задач по теме «Тепловые явления»

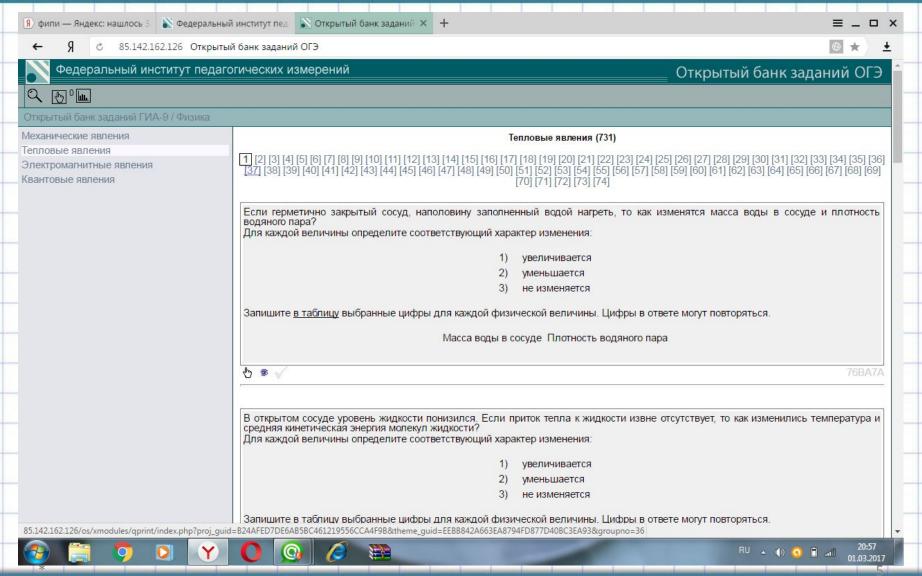
Задачи семинара:

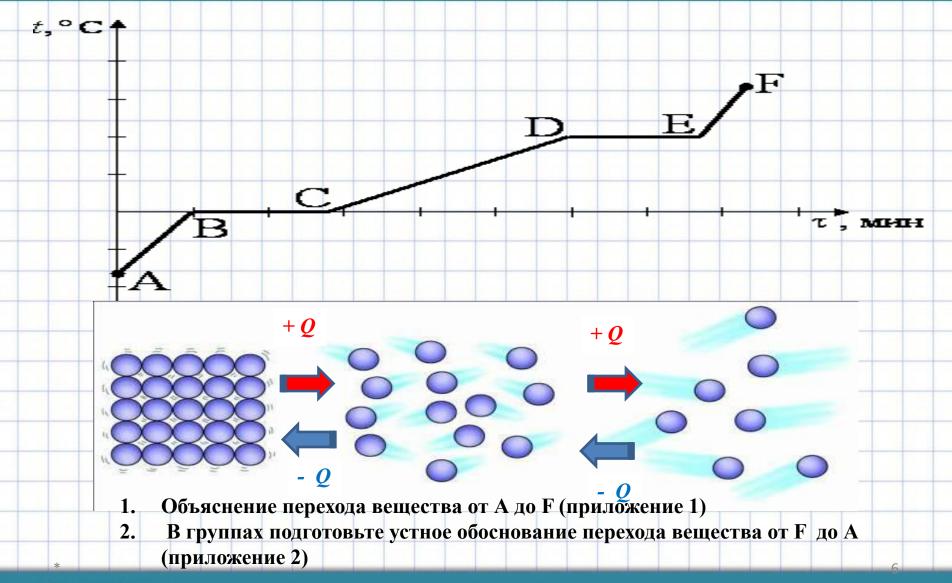

- 1. Познакомиться с открытым банком заданий ОГЭ.
- 2. Изучить и применить критерии оценивания задач ОГЭ.
- 3. Применять знания по теме для решения графических задач и задач на закон сохранения энергии при тепловых процессах.

Елена Николаевна Шалагина — учитель физики МБОУ «Ужурская СОШ №1 им. А. К. Харченко»



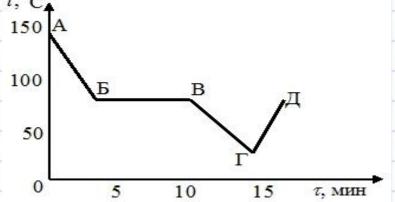

Что такое «открытый банк заданий»? Как его открыть?


Как открыть «Открытый банк заданий»?


Как открыть «Открытый банк заданий»?

Как открыть «Открытый банк заданий»?

На рисунке представлен график зависимости температуры от времени для процесса нагревания льда.


Познакомьтесь с критериями 1 оценивания качественных задач

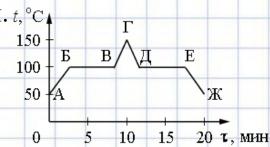
- 1. Ответ должен быть записан полным предложением.
- 2. Обоснование должно содержать:
- ✓ ссылку на формулу (закон, правило, определение);
- ✓ рассуждения.

При затруднении решения на 30 секунд можете воспользоваться помощью любого учителя

ГРУППА 1. Обсудите задачу. Четко запишите <u>ответ,</u> сославшись на <u>определение (правило, формулу, закон</u>), приведите <u>рассуждения</u>. Будьте готовы к оцениванию по Критериям 1. (2 минуты)

- Задача 1. Как изменяется внутренняя энергия кристаллического вещества в процессе его плавления?
- Задача 2. На рисунке изображён график зависимости температуры вещества от времени. Первоначально вещество находилось в жидком состоянии. Какой из процессов соответствует 150 A отрезку БВ?

ГРУППА 2. Обсудите задачу. Четко запишите <u>ответ,</u> сославшись на <u>определение (правило, формулу, закон</u>), приведите <u>рассуждения</u>. Будьте готовы к оцениванию по Критериям 1. (2 минуты)


- Задача 1. В процессе плавления кристаллического вещества...
- Задача 2. На рисунке представлен график зависимости температуры от времени для процесса нагревания воды при нормальном атмосферном давлении. Первоначально вода находилась в твёрдом состоянии. Какое из утверждений является неверным?

T, MIHH

- 1. Участок DE соответствует процессу кипения воды.
- 2. Точка C соответствует жидкому состоянию воды.
- 3. В процессе AB внутренняя энергия льда не изменяется.

ГРУППА 3. Обсудите задачу. Четко запишите <u>ответ,</u> сославшись на <u>определение (правило, формулу, закон</u>), приведите <u>рассуждения</u>. Будьте готовы к оцениванию по Критериям 1. (2 минуты)

- Задача 1. При повышении температуры модуль средней скорости теплового движения молекул увеличивается...
- Задача 2. На рисунке приведён график зависимости температуры *t* воды от времени т при нормальном атмосферном давлении. Какое из утверждений является неверным?
- 1. Участок АБ соответствует процессу нагревания воды,
- 2. В процессе, соответствующем участку ЕЖ, внутренняя энергия воды уменьшается,
- 3. Точка Е соответствует твёрдому состоянию воды. t, °С
- 4. В процессе, соответствующем участку БВ, внутренняя энергия системы вода—пар увеличивается.

ГРУППА 4. Обсудите задачу. Четко запишите <u>ответ,</u> сославшись на <u>определение (правило, формулу, закон</u>), приведите <u>рассуждения</u>. Будьте готовы к оцениванию по Критериям 1. (2 минуты)

- Задача 1. Лёд, нагретый предварительно до температуры плавления, начинают плавить. Как в процессе плавления изменяется температура и внутренняя энергия смеси вода лёд? Установите соответствие между физическими величинами и их возможными изменениями.
- Задача 2. На рисунке приведён график зависимости температуры t воды от времени τ , полученный при равномерном непрерывном нагревании. Начальная температура воды $50\,^{\circ}$ С. В каком состоянии находится вода в момент времени τ_1 ?

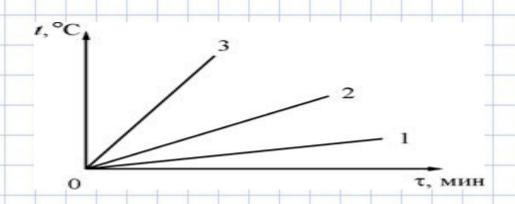
100

50

O

T, MHH

ГРУППА 5. Обсудите задачу. Четко запишите <u>ответ,</u> сославшись на <u>определение (правило, формулу, закон</u>), приведите <u>рассуждения</u>. Будьте готовы к оцениванию по Критериям 1. (2 минуты)


- Задача 1. После того как пар, имеющий температуру 120°C, впустили в воду при комнатной температуре, внутренняя энергия пара и воды...
- Задача 2. На рисунке графически изображён процесс теплообмена для случая, когда в нагретую до 40 °C воду опускают кусок льда такой же массы. Потерями энергии при теплообмене можно пренебречь. Используя рисунок, выберите из предложенного перечня два верных утверждения.
- 1. Вода отдаёт часть своей внутренней энергии в результате теплообмена.
- 2. Лёд отдаёт часть внутренней энергии в результате теплообмена.
- 3. Отрезок CD соответствует количеству теплоты, полученному льдом при плавлении.
- 4. Отрезок ВС соответствует
- количеству теплоты, полученному льдом
- 5. На участке CD внутренняя энергия льда.

12

Q. Дж

ГРУППА 6. Обсудите задачу. Четко запишите <u>ответ,</u> сославшись на <u>определение (правило, формулу, закон</u>), приведите <u>рассуждения</u>. Будьте готовы к оцениванию по Критериям 1. (2 минуты)

- Задача 1. Вода, охлаждённая предварительно до температуры кристаллизации, начинает кристаллизоваться. Как в процессе кристаллизации изменяется температура и внутренняя энергия смеси вода лёд?
- Задача 2 На рисунке представлены графики зависимости температуры t от времени τ для трех твёрдых тел одинаковой массы: из алюминия, из меди и из свинца. Тела нагревают на одинаковых горелках. Определите, какой график соответствует нагреванию тела из алюминия, какой из меди, а какой телу из свинца?.

Познакомьтесь с критериями 2

13:33	оценивания расчетных задач	
	Содержание критерия расчетной задачи	Б
Приведено полное правильное решение, включающее следующие элементы:		3
1. Верно записано кр	аткое условие задачи;	

2. Записаны равнения и формулы, применение которых необходимо и достаточно для решения задачи выбранным способом;

3. Выполнены необходимые математические расчеты, приводящие к правильному числовому ответу, и представлен ответ. При этом допускается решение по частям (с промежуточными вычислениям).

Правильно записаны необходимые формулы, проведены вычисления, и получен ответ (верный или неверный), но допущена ошибка в записи краткого условия или переводе единиц в СИ. ИЛИ

Представлено правильное решение только в общем виде, без каких- либо числовых расчётов. ИЛИ

Записаны уравнения и формулы, применение которых необходимо и достаточно для решения задачи

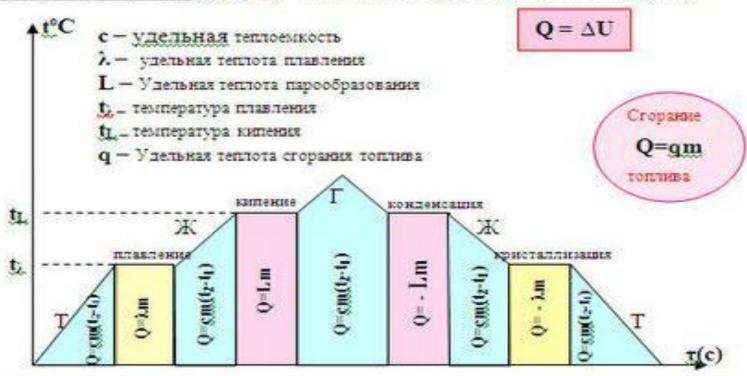
выбранным способом, но в математических преобразованиях или вычислениях допущена ошибка

Записаны и использованы не все исходные формулы, необходимые для решения задачи.

ИЛИ

Записаны все исходные формулы, но в одной из них допущена ошибка

Все случаи решения, которые не соответствуют вышеуказанным критериям выставления оценок в 1,


2, 3 балла

Максимальный балл

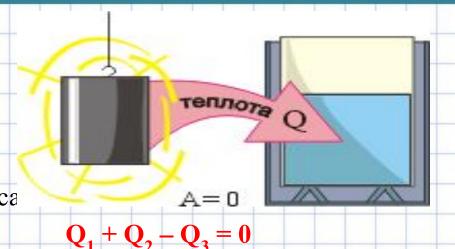
Решение расчетных задач

Количество теплоты (Q[Дж]) — это изменение внутр. энергии без работы (ΔU) .

При решении задач необходимо выяснить, какие тепловые процессы происходят по условию задачи. После этого составить уравнение теплового баланса.

Уравнение теплового баланса:

$$Q_1 + Q_2 + Q_3 + Q_4 \cdot \cdot \cdot = 0$$



Алгоритм решения задач на уравнение теплового баланса

- 1. Выделите вещества, которые участвуют в теплопередаче:
- 2. Определите, какое вещество отдает тепло, а какое получает.Запишите уравнение теплового баланса

Q отд = Q полученное

ИЛИ

- 3. **Важно**: определить и назвать процессы, которые происходят с 1-м и 2-м веществом: Например: в **воду** (при 100° C) положили **лед** (при -10° C)
- ✓ охлаждение воды $Q_1 = cm\Delta t_1 вода отдает тепло;$
- ✓ нагревание льда $Q_2 = cm\Delta t_2$ лед получает тепло
- \checkmark плавление льда $Q_3 = \lambda m$

 $\mathbf{BOДA} : \mathbf{Q} \text{ отд} = \mathbf{Q}_1$

ЛЕД: Q полученное = $Q_2 + Q_3$

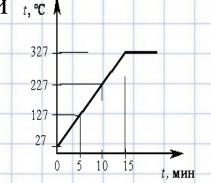
- 4. Подставить формулы в уравнение теплового баланса $\operatorname{cm}\Delta t_1 = \operatorname{cm}\Delta t_2 + \lambda m$
- 5. Найти искомую величину.

Пример решения задачи. 2 балла, т. к. нет краткой записи

В сосуд налили 1 кг воды при температуре 90 °C. Чему равна масса воды, взятой при 30 °C, которую нужно налить в сосуд, чтобы в нём установилась температура воды, равная 50 °C? Потерями энергии на нагревание сосуда и окружающего воздуха пренебречь.

$$Q_{x} = Q_{x}$$

$$cm_{z}(t_{z}-t_{c})=cm_{x}(t_{o}-t_{x})$$

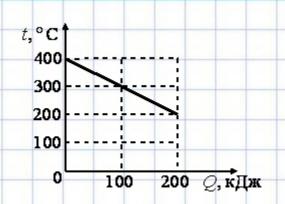

$$m_{z} = \frac{m_{z}(t_{z}-t_{d})}{t_{c}-t_{x}} = \frac{1m_{z}(90-50)}{50-30}$$

$$= \frac{40}{20} = 2m_{z}$$

Группа 1 Решите задачу.

Запишите краткую запись, формулы, математический расчет, ответ. Представьте задачу, будьте готовы к ее оцениванию по критериям 2.

1. На рисунке представлен график зависимости *t*, с температуры от времени для процесса нагревания слитка свинца массой 1 кг. Какое количество теплоты получил свинец за 10 мин нагревания?



2. Сколько спирта надо сжечь, чтобы нагреть воду массой 2 кг на 29 °C? Считать, что вся энергия, выделенная при сгорании спирта, идёт на нагревание воды.

Группа 2 Решите задачу.

вапишите краткую запись, формулы, математический расчет, ответ. Представьте задачу, будьте готовы к ее оцениванию по критериям 2.

1. На рисунке представлен график зависимости температуры твёрдого тела от отданного им количества теплоты. Масса тела 4 кг. Чему равна удельная теплоёмкость вещества этого тела?

2. 3 литра воды, взятой при температуре 20 °C, смешали с водой при температуре 100 °C. Температура смеси оказалась равной 40 °C. Чему равна масса горячей воды? Теплообменом с окружающей средой пренебречь.

Группа 3 Решите задачу.

- 1. Какое количество теплоты выделяется при превращении 500 г воды, взятой при 20°С, в лёд при температуре 0°С? Потерями энергии на нагревание окружающего воздуха пренебречь.
- 2. В снежный сугроб, имеющий температуру 0°С, бросили раскалённый до температуры 300°С медный шар массой 2,2 кг. Какова масса расплавленного снега? Потерями энергии в окружающую среду и испарением воды пренебречь.

Группа 4 Решите задачу.

- 1. Какое количество теплоты выделится при конденсации 2 кг водяного пара, взятого при температуре 100 °C, и последующего охлаждения воды до 40 °C при нормальном атмосферном давлении?
- 2. Энергии, полученной при остывании горячей воды от 100°С до 70°С, хватило только для плавления 840 г льда, взятого при температуре 0°С. Какова была масса горячей воды? Потерями энергии в окружающую среду пренебречь.

Группа 5. Решите задачу.

- 1. Сколько энергии необходимо для плавления куска олова массой 2 кг, взятого при температуре 32 ?С?
- 2. С помощью электрического нагревателя сопротивлением 200 Ом нагревают 440 г молока. Электронагреватель включен в сеть с напряжением 220 В. За какое время молоко в сосуде нагреется на 55 °C? Удельную теплоемкость молока принять равной 3900 Дж/(кг·°С). Теплообменом с окружающей средой пренебречь.

Группа 6. Решите задачу.

- 1. Какое количество теплоты необходимо, чтобы нагреть 1 л воды от 20 °C до 100 °C? Вода нагревается в алюминиевой кастрюле массой 200 г. Тепловыми потерями пренебречь.
- 2. В алюминиевый калориметр массой 50 г налито 120 г воды и опущена спираль сопротивлением 2 Ом, подключённая к источнику напряжением 15 В. За какое время калориметр с водой нагреется на 9 ° С, если потерями энергии в окружающую среду можно пренебречь?

Сегодня на семинаре:

- Я узнал....
- Я научился/не научился...
- Я понял /не понял...
- Мне понравилось/ не понравилось...
- Мне нужно отработать...
- Мне нужно повторить...
- Было полезно...
- Хочется поблагодарить...