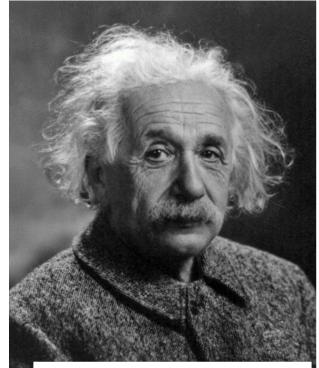
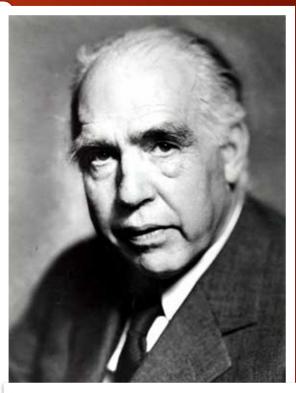

Фотоны и его характеристики.

Повторение. Дополните предложения

- Квант света ...
- Фотоэффект это...
- Число электронов, вырываемых светом с поверхности металл пропорционально...
- Максимальная кинетическая энергия выбитых светом электронов зависит от...
- Уравнение Эйнштейна для фотоэф
- Красная граница фотоэффекта...


Цели урока


- Почему электромагнитные волны различных диапазонов имеют различные свойства?
- Может ли энергия существовать без частиц?
- Чем объясняется явление фотосинтеза?
- Чем объяснить мутацию генов при радиоактивном облучении тел?

ОСНОВОПОЛОЖНИКИ КВАНТОВОЙ ТЕОРИИ

МАКС ПЛАНК (1858 - 1947)

АЛЬБЕРТ ЭЙНШТЕЙН (1879 – 1955)

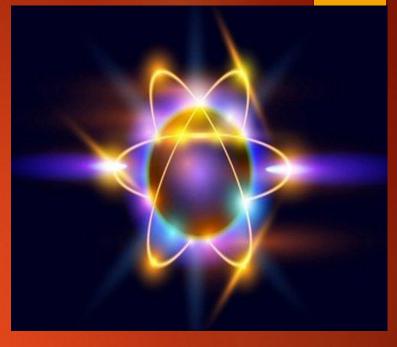
НИЛЬС БОР

(1885 - 1962)

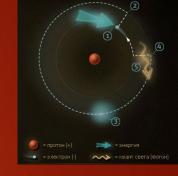
Фотон - квант электромагнитного излучения.

Некоторые свойства фотонов

- 1. Не имеют заряда
- 2. Движутся со скоростью света
- 3. Существуют только в движении
- 4. Энергия фотонов $E = h v = h c / \lambda = m c^2$
- 5. Масса фотонов $m = h v / c^2$
- 6. Импульс фотонов p = m c = h v / c = h / л = E /c
- 7. Оказывают давление на вещество


Волновые свойства частиц

Корпускулярно-волновой дуализм - универсальное свойство любых материальных объектов, проявляющееся на микроскопическом уровне

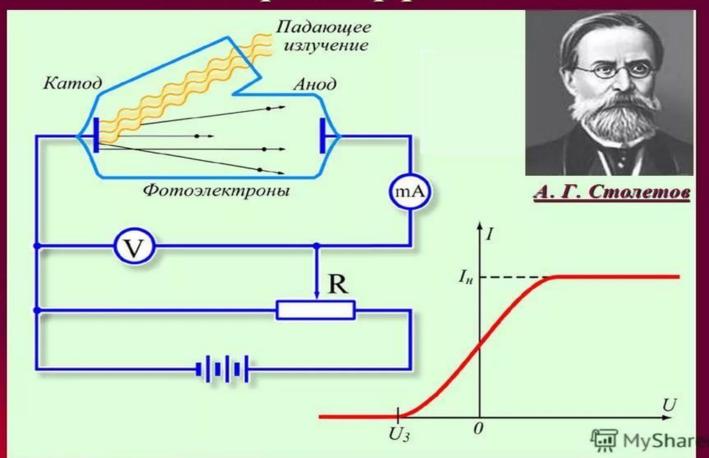

- Любой частице, обладающей импульсом, соответствует длина волны де Бройля:
- ▶ ЛБ = h/р

- Электромагнитные волны обладают двойственной природой
- Чем больше частота электромагнитных волн, тем ярче выражены квантовые свойства и менее волновые При распространении электромагнитных волн ярче проявляются волновые свойства
- При взаимодействии с веществом ярче проявляются Корпускулярноквантовые свойства

волновой дуализм

Сравни свойства фотона и электрона (заполни таблицу)

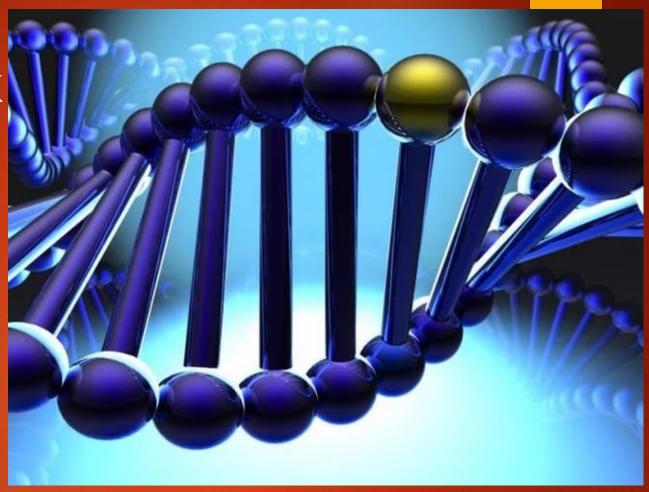
Свойства	фотон	электрон
заряд		
масса		
скорость		
энергия		
импульс		
дифракция		
время жизни		
длина волны		


Свойства	фотон	электрон
Заряд	0	1,6*10(-19) Кл
Macca	m = h v / c ² v - частота h - постоянная Планка	9,1*10(-31)кг (без учета релятивистского эффекта)
Скорость	с=3*10(8)м/с - в вакууме с/п - в веществе (п - показатель преломления вещества)	Меньше скорости света (с) в ИСО
Энергия	E = h v = h c / A = m c² h - постоянная Планка	E= m c², m - релятивистская масса

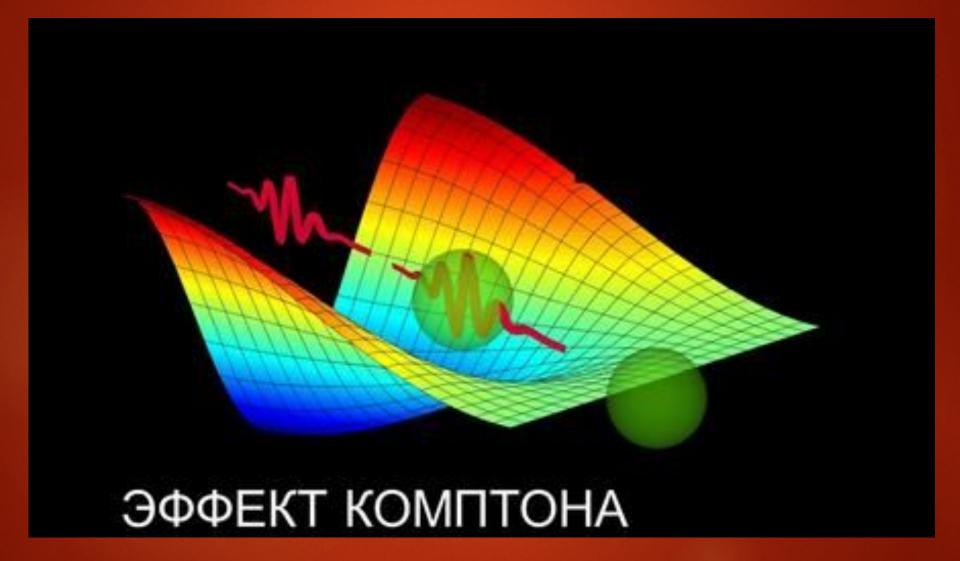
Свойства	фотон	электрон
Импульс	p = m c = h v / c = h / A = = E /c	р = m и, и - скорость
Где наблюдается дифракция	На дифракционной решетке	На кристаллах
Время жизни	Пока движется	Стабилен
Длина волны	Л(Б) = h/р Л(Б) - длина волны де Бройля	Л(Б) = h/p

Доказательства квантовой природы электромагнитных волн

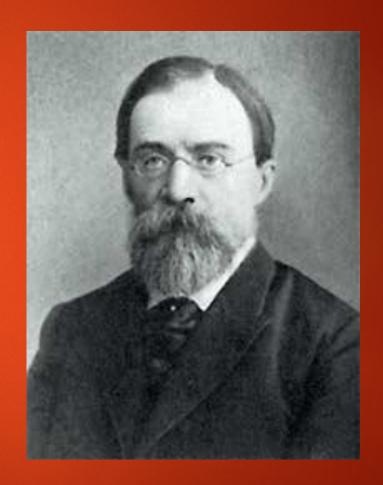
ФОТОЭФФЕКТ


Исследование фотоэффекта (1888 год)

ФОТОСИНТЕЗ



Доказательства квантовой природы электромагнитных волн Мутация ДНК


Доказательства квантовой природы электромагнитных волн

Доказательства квантовой природы электромагнитных волн

Итоги урока

- Что нового вы узнали?
- Было ли интересно?
- Какими новыми знаниями и умениями вы хотели бы поделиться с друзьями?

Домашнее задание

- ► §55,56
- Упражнение 20
- Сообщение «Применение фотоэффекта»