

электрический

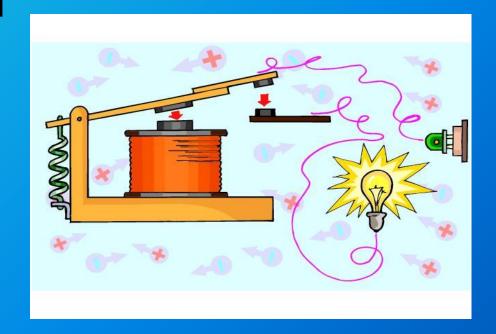
ТОК

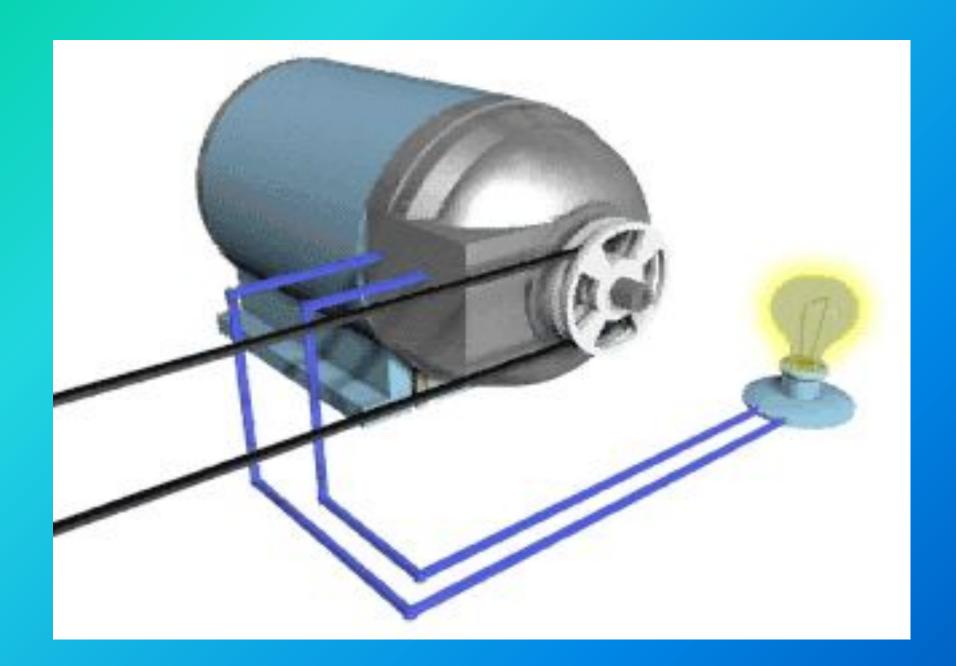
Сегодня на уроке:

- Переменный электрический ток.
- Резистор в цепи переменного тока.
- Действующие значения напряжения и силы тока.
- Мощность в цепи переменного тока.

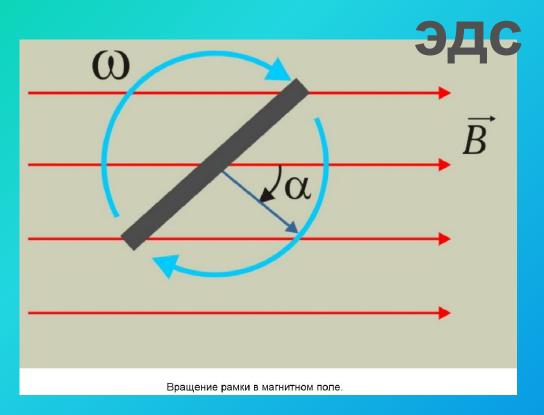
Как наша прожила б планета, Как люди жили бы на ней Без теплоты, магнита, света И электрических лучей?

Адам Мицкевич



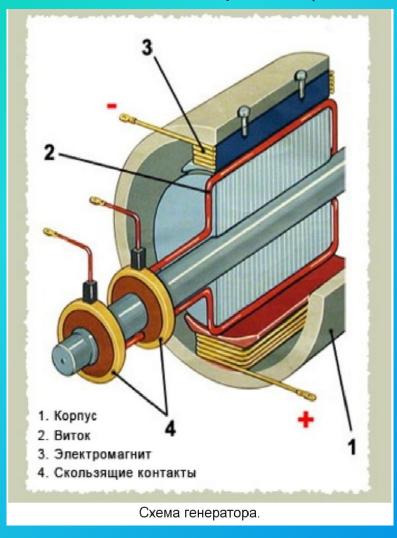


Электрический ток величина и направление которого меняются с течением времени называется переменным.


Переменный электрический ток

представляет собой вынужденные электромагнитные колебания.

Получение переменной


Переменный ток может возникать при наличии в цепи переменной ЭДС. Получение переменной ЭДС цепи основано на явлении электромагнитной индукции. Для этого токопроводящую рамку равномерно с угловой скоростью однородном вращают в При магнитном поле. ЭТОМ значение угла а между нормалью к рамке и вектором магнитной будет определяться индукции выражением: $\alpha = \omega \cdot t$

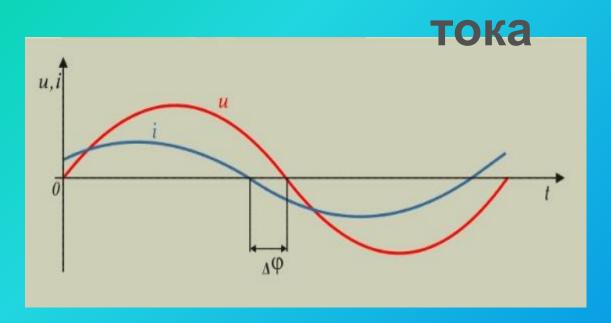
Следовательно, величина магнитного потока, пронизывающего рамку, будет изменяться со временем по гармоническому закону:

$$\Phi = B \cdot S \cdot \cos \alpha = B \cdot S \cdot \cos \omega \cdot t$$

Согласно закону Фарадея, при изменении потока магнитной индукции, пронизывающего контур, в контуре возникает ЭДС индукции. Используя понятие производной, уточняем формулу для закона электромагнитной индукции

 $e = -\Phi_t' = -(B \cdot S \cdot \cos \omega \cdot t)_t' = B \cdot S \cdot \omega \sin \omega \cdot t$

При изменении магнитного потока, пронизывающего контур, ЭДС индукции также изменяется со временем по закону синуса (или косинуса).


$$\varepsilon_{\scriptscriptstyle m} = B \cdot S \cdot \omega$$
 - максимальное значение или амплитуда ЭДС.

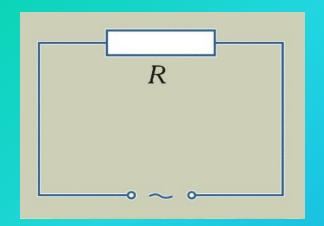
Если рамка содержит **N** витков, то амплитуда возрастает в **N** раз.

Подключив источник переменной ЭДС к концам проводника, мы создадим на них переменное напряжение:

$$u = U_m \cdot \sin \omega \cdot t$$

Общие соотношения между напряжением и силой

Как и в случае постоянного тока, сила переменного тока определяется напряжением на концах проводника. Можно считать, что в данный момент времени сила тока во всех сечениях проводника имеет одно и то же значение.


Но фаза колебаний силы тока может не совпадать с фазой колебаний напряжения.

В таких случаях принято говорить, что существует сдвиг фаз между колебаниями тока и напряжения. В общем случае мгновенное значение напряжения и силы тока можно определить: u = II состав

$$u=U_m\cdot\sin\omega t$$
 $u=U_m\cos\omega t$ $i=I_m\sin(\omega t+\varphi)$ $i=I_m\cos(\omega t+\varphi)$

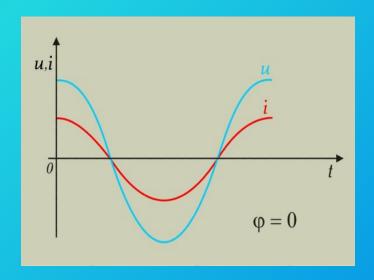
 ϕ — сдвиг фаз между колебаниями тока и напряжения $\mathbf{I}_{\mathbf{m}}$ — амплитуда тока, \mathbf{A} .

Резистор в цепи переменного

Рассмотрима цепь, содержащую нагрузку электрическое сопротивление которой велико. Это сопротивление мы теперь будем называть активным, так как при наличии такого сопротивления электрическая цепь поглощает поступающую к ней от источника тока энергию, которая превращается во внутреннюю энергию проводника. В такой цепи:

$$u = U_m \cdot \cos \omega \cdot t$$

Электрические устройства, преобразующие электрическую энергию во внутреннюю, называются


<u>активными сопротивлениями</u>

Поскольку мгновенное значение силы тока прямо пропорционально мгновенному значению напряжения, то его можно рассчитать по закону Ома для участка цепи:

$$i = \frac{u}{R} = \frac{U_m \cdot \cos \omega t}{R} = I_m \cdot \cos \omega t$$

$$U_m$$

$$I_m = \frac{U_m}{R}$$

В цепи с активным сопротивлением сдвиг фаз между колебаниями силы тока и напряжения равен нулю, т.е. колебания силы тока совпадают по фазе с колебаниями напряжения.

Действующие значения напряжения

Когда говорят, что напряжение в городской электрической сети составляет 220 В, то речь идёт не о мгновенном значении напряжения и не его амплитудном значении, а о так называемом действующем значении.

Когда на электроприборах указывают силу тока, на которую они рассчитаны, то также имеют в виду действующее значение силы тока.

ФИЗИЧЕСКИЙ СМЫСЛ

Действующее значение силы переменного тока равно силе постоянного тока, выделяющего в проводнике то же количество теплоты, что и переменный ток за то же время.

 $I = \frac{I_m}{\sqrt{2}}$

Действующее значение напряжения: $U = \frac{U_m}{\sqrt{2}}$

Мощность в цепи переменного

Действующие значения **напряж**ения и силы тока фиксируются электроизмерительными приборами и позволяют непосредственно вычислять мощность переменного тока в цепи.

Мощность в цепи переменного тока определяется теми же соотношениями, что и мощность постоянного тока, в которые вместо силы постоянного тока и постоянного напряжения подставляют соответствующие действующие значения:

$$P = U \cdot I$$

Когда между напряжением и силой тока существует сдвиг фаз, мощность определяется по формуле:

$$P = U \cdot I \cdot \cos \varphi$$

ВЫВОДЫ

На этом уроке вы узнали, что:

- □ переменный электрический ток представляет собой вынужденные электромагнитные колебания, в которых сила тока в цепи изменяется со временем по гармоническому закону;
- □ получение переменной ЭДС в цепи основано на явлении электромагнитной индукции;
- □ на активном сопротивлении разность фаз колебаний силы тока и напряжения равна нулю;
- □ действующие значения переменного тока и напряжения равны значениям постоянного тока и напряжения, при которых в цепи с тем же активным сопротивлением выделялась бы та же энергия;
- □ мощность в цепи переменного тока определяется теми же соотношениями, что и мощность постоянного тока, в которые вместо силы постоянного тока и постоянного напряжения подставляют соответствующие действующие значения.

Ответы

Nº	Вариант 1	Вариант 2
вопроса		
1	A	В
2	Б	Б
3	В	A
4	В	A
5	В	A

РЕШЕНИЕ ЗАДАЧ

Рамка, имеющая 100 витков, вращается с частотой 15 Гц в однородном магнитном поле индукцией 0,2 Тл. Чему равна площадь рамки, если амплитудное значение возникающей в ней ЭДС 45 В?

ДАНО: N=100 шт v=15 Гц B=0,2 Тл ε_m =45 B

S - ?

РЕШЕНИЕ:

$$e = ε_m sinωt$$
 $ε_m = BS ω$
 $ω = 2π/T = 2π ν$
 $ε_m = BS 2π ν (1 βυτοκ)$
 $ε_{mn} = BSN 2π ν$
 $S = ε_{mn} / (BN 2π ν)$

ВЫЧИСЛЕН

ME.

$$S = \frac{45}{0,2 \cdot 100 \cdot 2 \cdot 3,14 \cdot 15} = 0,024 \text{ m}^2$$

PA3MEPHOC

 $[S] = \left[\frac{B}{T_{\pi} \cdot \Gamma_{\mathbf{H}}} = \frac{\frac{\mathcal{A}_{\mathbf{K}}}{K_{\pi}}}{\frac{H}{A \cdot \mathbf{M}} \cdot \frac{1}{c}} = \right]$

$$= \frac{\frac{H \cdot M}{A \cdot c}}{\frac{H}{A \cdot M} \cdot \frac{1}{c}} = M^2$$

OTBET: S = 0,024

_ _2