Тема урока:

«Ядерные силы».

«Дефект массы».

«Энергия связи».

План урока:

□ Ядерные силы.

□ Дефект масс.

□ Энергия связи.

І. Ядерные силы.

Особые силы, действующие между ядерными частицами нуклонами (протонами и нейтронами) называются ядерными силами.

Свойства ядерных сил.

- 1. Ядерные силы обеспечивают притяжение нуклонов друг к другу, причем независимо от того, в каком зарядовом состоянии (протонном или нейтроном) эти нуклоны находятся.
- 2. Ядерные силы примерно в 100 раз превышают кулоновские силы.
- 3. Ядерные силы имеют короткодействующий характер, т.е. проявляются лишь на очень малых расстояниях, сравнимых с радиусом атомного ядра (10⁻¹⁴ 10⁻¹⁵ м).

ІІ. Дефект массы.

 Разность между суммой масс нуклонов и массой ядра атома М_{ат} содержащего рассматриваемое ядро называется дефектом массы этого ядра.

$$\Delta M = (ZM_H + Nm_n) - M_{aT}$$

- **∆М** –дефект массы.
- **Z** -количество протонов.
- М_н- масса ядра водорода.
- N количество нейтронов.
 - m_n масса нейтрона.
- **М**_{ат} масса атома, содержащего рассматриваемое ядро.

Единица измерения дефекта массы.

[ΔМ] – 1 а.е.м. (атомная единица массы).

1 a.e.м. = $1,66 * 10^{-27}$ кг.

III. Энергия связи.

 Минимальная энергия, необходимая для полного расщепления ядра на отдельные нуклоны, называется

энергией связи атомного ядра.

Энергия связи - это та энергия, которая выделяется при объединении нуклонов в одно атомное ядро.

Е_{св} – энергия связи.

$$\mathsf{E}_{\mathsf{CB}} = \Delta \mathbf{M} * \mathbf{C}^2$$

$$\Delta M = (ZM_H + Nm_n) - M_{aT}$$

 C^2 -скорость света

Формула расчета энергии связи.

$$E_{cB} = (ZM_{H} + Nm_{n} - M_{aT}) * C^{2}$$

Единицы измерения энергии связи.

$$[E_{cB}] = 1 \text{ M}_{9}B$$

$$C^2 = 931,5 \text{ M}_3\text{B} / \text{a.e.m}$$

Пример рассчета $^{7}_{3}$ $\mathcal{L}i.$

Определим сначала дефект массы ΔM_{ullet}

```
Z = 3 (количество протонов)

M_{H} = 1,00783 \text{ a.e.м.} ( таб.13)

N=4 ( количество нейтронов)

m_{n} = 1,00867 \text{ a.e.м.} ( таб.15)

M_{AT} = 7,01601 \text{ a.e.м.} (таб.13)
```

$$\Delta M = (ZM_H + Nm_n) - M_{aT}$$

$$[\Delta M] = (a.e.m. + a.e.m.) - a.e.m. = a.e.m.$$

$$\Delta M = (3*1,00783) \Delta M = (3*1,00783) +$$

$$4*1,00867\Delta M=(3*1,00783 +$$

$$=7,05817-7,01601=$$
 0,04216 a.e.m.

$$\mathbf{E}_{_{\mathbf{CB}}} = \Delta \mathbf{M} * \mathbf{C}^2$$

[Е_{св}]=а.е.м.*МэВ/а.е.м.=МэВ

$$E_{CB} = 0.04216*931,5=39,27204 \text{ M}_{2}B$$

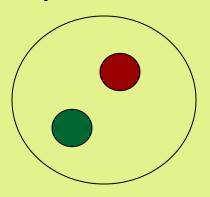
Рассчитать энергию связи следующих элементов:

- 1 ряд (ст. 1-2) ²₁H -дейтерий
- 1 ряд (ст. 3-4) ³₁H –тритий
- 2 ряд (ст.1-2) ³₂Не- гелий
- 2 ряд (ст. 3-4) ⁴₂He- гелий
- 3 ряд (ст. 1-2) ⁶₃Li литий
- 3 ряд (ст. 3-4) ⁸₄Ве- бериллий

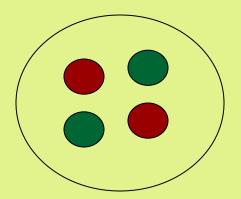
Исходные данные.

- □ М_н таб.13
- □ m_n таб.15
- □ М_{ат} таб. **13**
- п С² 931,5 МэВ
- $\Box E_{CB} = \Delta M * C^2$

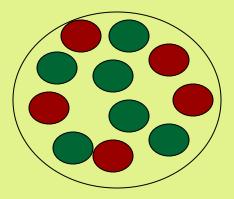
Какой химический элемент?

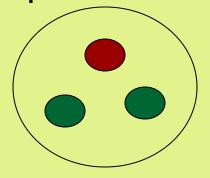


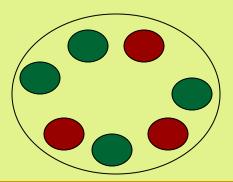
протон

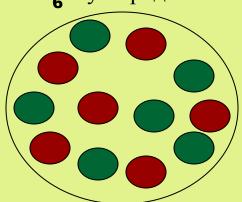


нейтрон


2₄Н**-**дейтерий


4₂Не**-**гелий


11₅В- бор


3₄Н**-**тритий

⁷₃Li-литий

12₆С-углерод

Особые силы, действующие между ядерными частицами нуклонами (протонами и нейтронами) называются
 ядерными силами.

Ядерные силы

обеспечивают притяжение нуклонов друг к другу, причем независимо от того, в каком зарядовом состоянии эти нуклоны находятся.

Ядерные силы

примерно в 100 раз превышают кулоновские силы.

Ядерные силы

имеют короткодействующий характер, т.е. проявляются лишь на очень малых расстояниях сравнимых с радиусом атомного ядра.

 Разность между суммой масс нуклонов и массой атома М_{ат} содержащего рассматриваемое ядро называется дефектом массы. Минимальная энергия, необходимая для полного расщепления ядра на отдельные нуклоны, называется

энергией связи атомного ядра

Домашнее задание:

- §§ 64,65 (Ядерные силы. Дефект массы.
 Энергия связи).
- А.П.Рымкевич: № 1209.