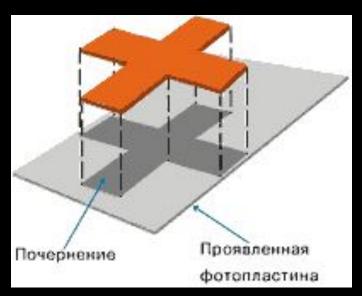
«Радиоактивность - и благо и зло»



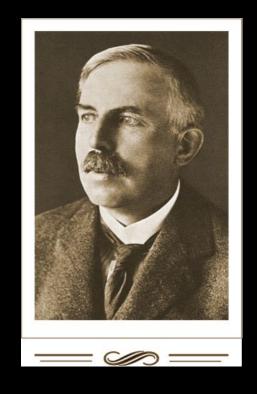
Цели:

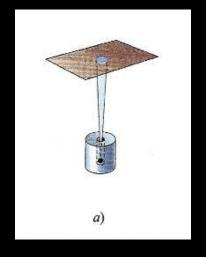
На основе многочисленных достоверных фактов анализировать и привести выводы по следующим вопросам:

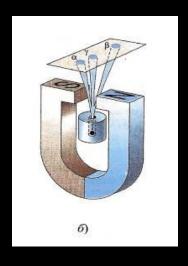
- Существует ли опасность мирного атома?
- Опасна ли атомная энергетика?
- Загрязнение окружающей среды АЭС
- Последствия Чернобыльской катастрофы

Изучая действие люминесцирующих веществ на фотопленку, французский физик Антуан Беккерель обнаружил неизвестное излучение. Он проявил фотопластинку, на которой в темноте некоторое время находился медный крест, покрытый солью урана. На фотопластинке получилось изображение в виде отчетливой тени креста. Это означало, что соль урана самопроизвольно излучает. За открытие явления естественной радиоактивности Беккерель в 1903 году был удостоен Нобелевской премии.

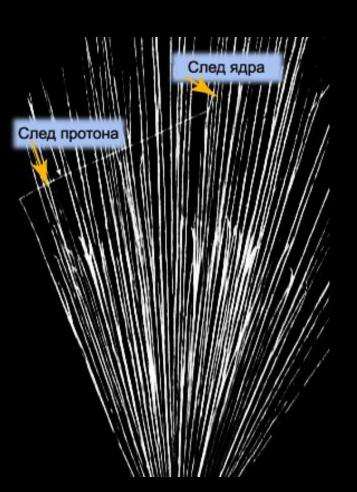
Мария Склодовская-Кюри и Пьер Кюри.







Радиоактивность - доказательство сложного строения атомов.



• Эрнест Резерфорд

Ядерные реакции

ЯДЕРНЫЕ РЕАКЦИИ – это превращения взаимодействия друг с другом или какими-либо элементарными частицами. **Для осуществления ядерной реакции** необходимо, чтобы сталкивающиеся частицы сблизились на расстояние энергии, импульса, электрического и барионного зарядов. Ядерные реакции причем эта энергия примерно в 10⁶ раз превышает энергию, поглощаемую или

Первая ядерная реакция осуществимая Э. Резерфордом

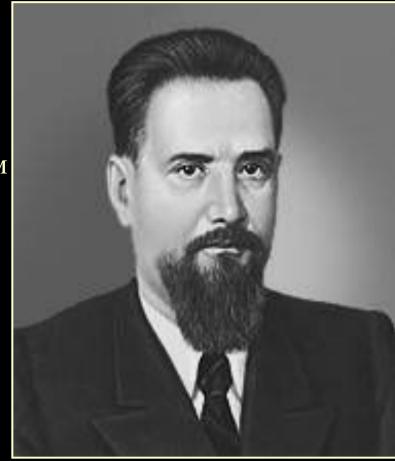
Атом покорен, НО цивилизация под угрозой.

Прав ли был Прометей, давший людям огонь? Мир рванулся вперед, мир сорвался с пружин, Из прекрасного лебедя вырос дракон, Из запретной бутылки был выпущен джин.

Неуправляемая цепная ядерная реакция.

Мирный атом

■ 1946г. – <u>первый</u> европейский реактор под руководством <u>И.В.</u> <u>Курчатова в Обнинске</u>


С чего все начиналось?! В 30-е годы нашего столетия известный

В 30-е годы нашего столетия известный ученый И.В. Курчатов работал по вопросам атомной техники в интересах народного хозяйства страны.

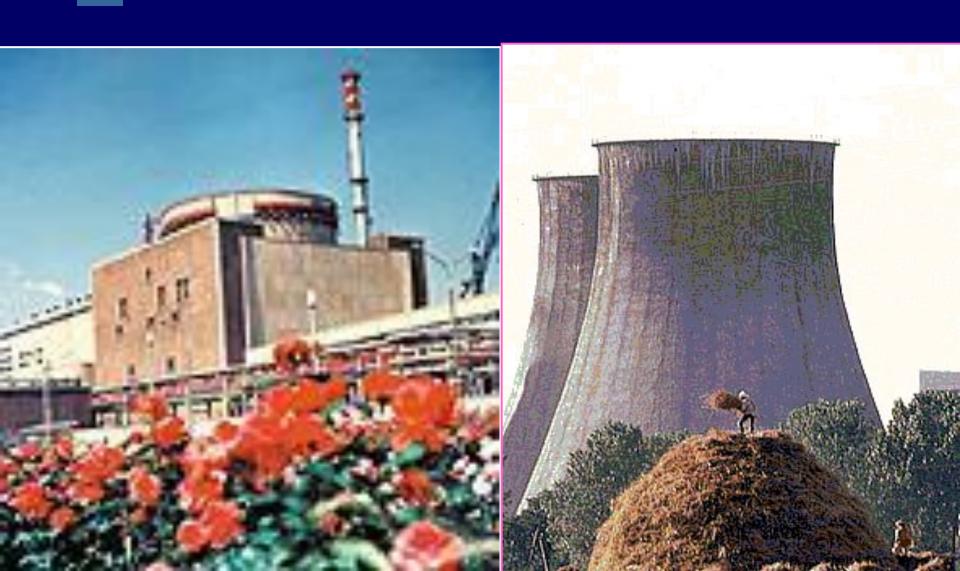
В 1946 г. в России был сооружен и запущен первый на Европейско-Азиатском континенте ядерный реактор.

Создается уранодобывающая промышленность.

Организованное производство ядерного горючего — урана-235 и плутония-239, налажен выпуск радиоактивных изотопов.

И.В.Курчатов

Атомный ледокол «Ленин»



A3C

АЭС

Дата ввода первых мощностей АЭС по странам

Дата ввода первых мощностей	Страна
1954	СССР
1956	Великобритания
1957	США
1963	Италия
1965	Франция
1966	ФРГ, Япония, ГДР
1967	Канада
1968	Испания, Нидерланды
1969	Швейцария, Индия
1971	Швеция, Пакистан
1974	Бельгия, Болгария, Аргентина
1977	Финляндия, Юж.Корея, о.Тайвань
1979	Чехословакия

В России имеется 10 атомных электростанций (АЭС), и практически все они расположены в густонаселенной европейской части страны. В 30-километровой зоне этих АЭС проживает более 4 млн. человек.

Балаковская АЭС Белоярская АЭС Билибинская АЭС Калининская АЭС (Тверская область, г. Удомля) Кольская АЭС Курская АЭС Ленинградская АЭС Нововоронежская АЭС Ростовская (Волгодонская) АЭС Смоленская АЭС

Наиболее мощные АЭС в мире

5320

5200

4765

4140

4116

3810

3700

3700

3660

4

4

5

5

8

3

4

4

4

паиоопее мощные дос в мире					
Название АЭС	Страна	Мощность, МВт	Количество блоков		
«Фукусима» (Fukushima)	R иноп R	8815	10		
«Брус» (Bruce)	Канада	6818	8		
«Гравелин» (Gravelines)	Франция	5460	6		

Франция

Франция

Украина

Франция

Канада

США

Россия

Россия

Франция

«Палюэль» (Paluel)

«Запорожская»

«Бюже» (Bugey)

«Ленинградская»

«Курская»

«Катном» (Cattenom)

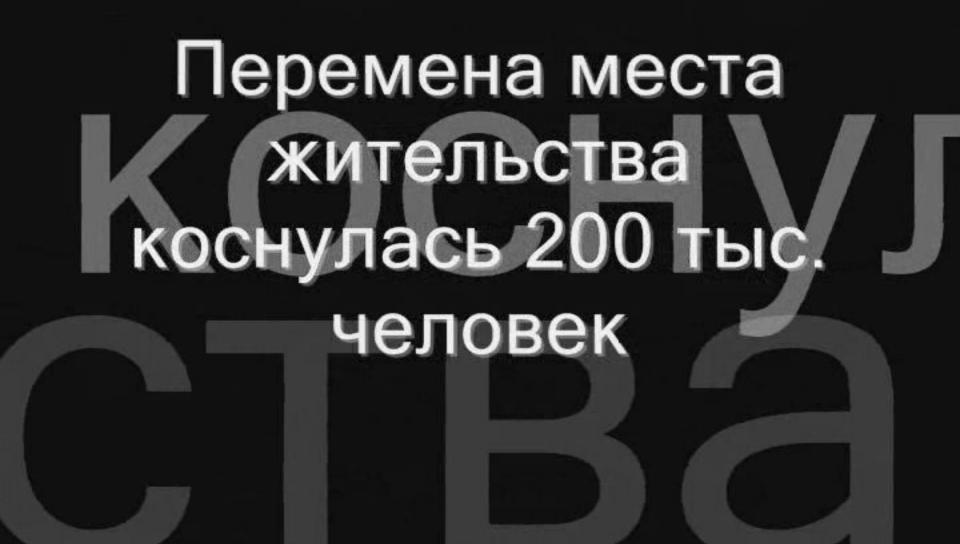

«Пикеринг» (Pickering)

«Трикастен» (Tricastin)

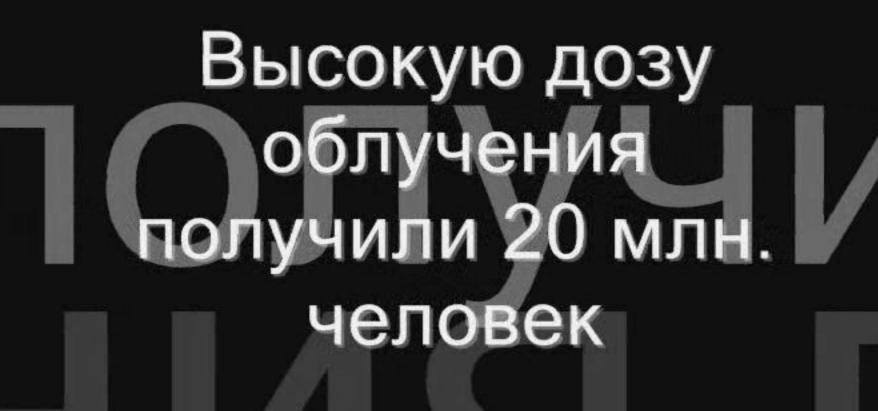
«Пало Верде» (Palo Verde)

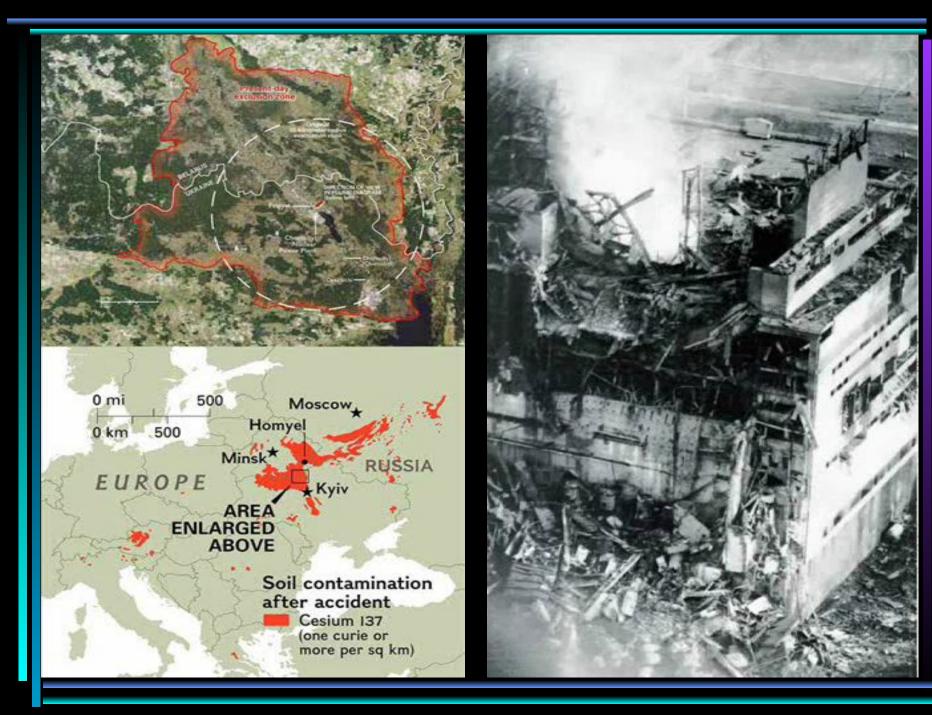
Всего с момента начала эксплуатации АЭС в 14 странах мира произошло более 150 инцидентов и аварий различной степени сложности. Некоторые из них:

- В 1957г в Уиндскейле (Англия)
- В1959г в Санта-Сюзанне (США)
- В1961г В Айдахо-Фолсе (США)
- В1979г в Три-Майл-Айленд (США)
- 1986 год Чернобыльская катастрофа.



26 апреля 1986 г. 1 час 24 минуты раздаются два взрыва


В ликвидации последствий участвовало 800 тыс. человек



Десятки тысяч погибли от лучевой болезни

Нанесен материальный ущерб 4,8 млн. человек

Заражена Территория на 130 тыс. м2

Чем сегодня опасен Чернобыль?

- Главные задачи:
- Создать надежную защиту над четвертым энергоблоком;
- Поддерживать в порядке старые могильники;
- Создать новые временные кладбища техники;
- Продолжить дезактивацию и «отмывание» территории и всех объектов от радиации

Радиоактивные отходы: современные проблемы и один из проектов их решения.

■ Однако опасность ядерной энергетики лежит не только в сфере аварий и катастроф. Даже без них около 250 радиоактивных изотопов попадают в окружающую среду в результате работы ядерных реакторов. Срединих:

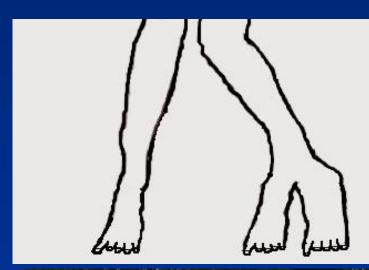
- Криптон-85. сейчас количество криптона-85 в атмосфере в миллионы раз выше, чем до начала атомной эры. Этот газ в атмосфере ведет себя как тепличный газ.
- Тритий или радиоактивный водород. Загрязнение грунтовых вод происходит практически вокруг всех АЭС.
- Углерод-14.
- Плутоний. На Земле было не более 50 кг этого сверх токсичного элемента до начала его производства человеком в 1941 году.

Виды радиационных излучений:

Виды излучений	Природа излучения	Проникающая способность	Ионизирующая способность
Гамма	Электромагни тная, рентгеновская	Большая, очень высокая	Малозначительная, ниже, чем у альфа частиц
Альфа	Поток ядер атома гелия	Слабая	Высокая
Бета	Поток электронов	Высокая, выше чем у альфа	Значительно ниже, чем у альфа
Нейтронное	Поток нейтронных частиц	Очень высокая	Высокая

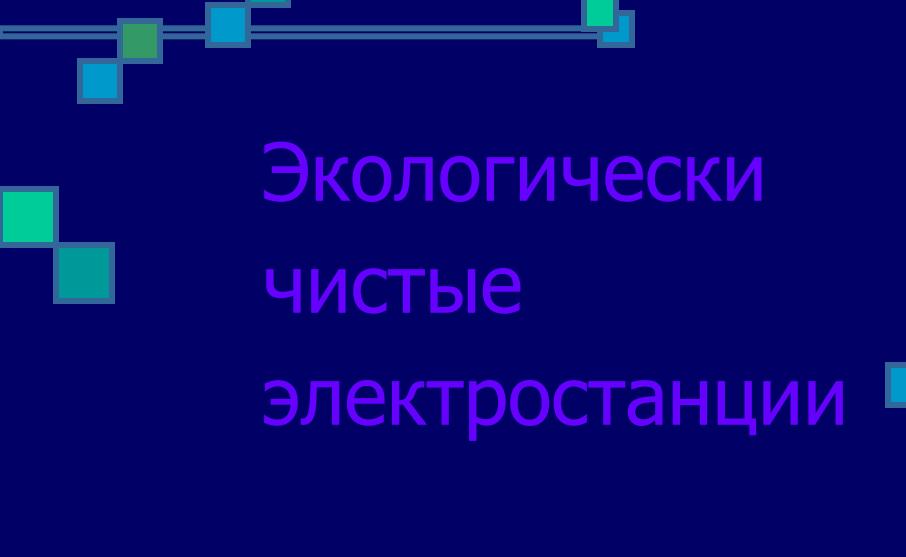

Безопасные дозы облучения

В сумме, приблизительно - три-четыре миллизиверта в год. Это безопасная суммарная средняя индивидуальная эффективная эквивалентная годовая доза для населения, учитывающая и внешние и внутренние источники облучения (естественные природные, техногенные, медицинские и прочие). В СССР - её величина принималась около 4м3в/год (приблизительно 0.4 Р/г).


Коэффициент чувствительности ткани при эквивалентной дозе облучения

Ткани	Эквивалентная доза <u>%</u>
Костная ткань	0,03
Щитовидная железа	0,03
Красный костный мозг	0,12
Легкие	0,12
Молочная железа	0,15
Яичники, семенники	0,25
Другие ткани	0,3
Организм в целом	1

Генетические последствия радиации



Долгая тень Чернобыля

Последствия радиации:

- Мутации
- Раковые заболевания (щитовидной железы, лейкоз, молочной железы, легкого, желудка, кишечника)
- Наследственные нарушения
- Стерильность яичников у женщин,
- Слабоумие

Ветряные

электростанции

ВЕТРОВАЯ ЭЛЕКТРОСТАНЦИЯ

ВЕТРОЭНЕРГЕТИКА - отрасль энергетики, связанная с разработкой методов и средств для преобразования энергии ветра в механическую, тепловую или электрическую энергию. Ветер возобновляемый источник энергии. Ветровая энергия может быть использована практически повсеместно; наиболее перспективно применение ветроэнергетических установок в сепьском хозяйстве

<u>Геотермальные</u> электростанции

ГЕОТЕРМАЛЬНАЯ ЭЛЕКТРОСТАНЦИЯ

ГЕОТЕРМАЛЬНАЯ ЭЛЕКТРОСТАНЦИЯ теплоэлектростанция, преобразующая внутреннее тепло Земли (энергию горячих пароводяных источников) в электрическую энергию. В России 1-я геотермальная электростанция (Паужетская) мощностью 5 МВт пущена в 1966 на Камчатке; к 1980 ее мощность доведена до 11 МВт. Геотермальные электростанции имеются в США, Новой Зеландии, Италии, Исландии, Японии.

Солнечные батареи

СОЛНЕЧНАЯ ЭЛЕКТРОСТАНЦИЯ

СОЛНЕЧНАЯ ЭЛЕКТРОСТАНЦИЯ, для выработки электроэнергии использует энергию солнечной радиации. Различают термодинамические солнечные электростанции и фотоэлектрические станции. Непосредственно преобразующие солнечную энергию в электрическую Электрическая мощность приствующих (1995) термодинамических солнечных электростанций св. 30 МВт, фотоэлектрических станций — св. 10 МВт.

ПРИЛИВНАЯ ЭЛЕКТРОСТАНЦИЯ

ПРИЛИВНАЯ ЭЛЕКТРОСТАНЦИЯ (ПЭС), преобразует энергию морских приливов в электрическую. Действующие ПЭС — в эстуарии р. Ранс во Франции, в губе Кислой на Баренцевом м. в Российской Федерации, близ Шанхая в Китае и др.