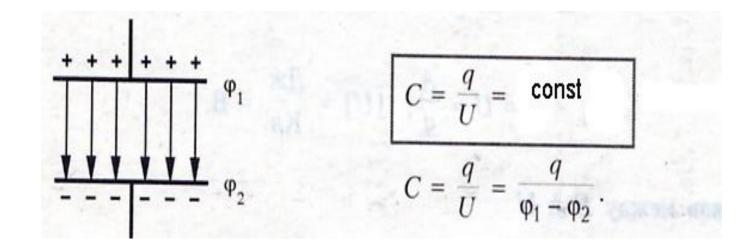
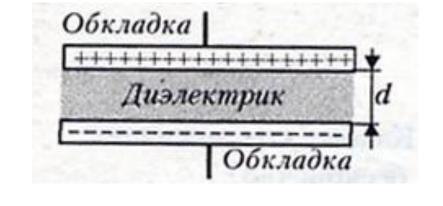
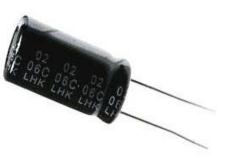

Электроемкость. Единица электроемкости. Конденсаторы. Энергия заряженного конденсатора.


Применение конденсаторов

ЭЛЕКТРОЕМКОСТЬ

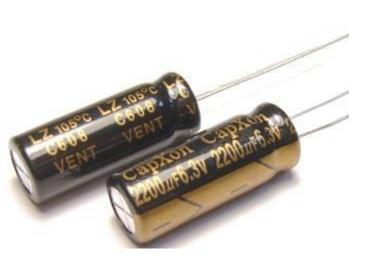
- характеризует способность двух проводников накапливать электрический заряд.
- не зависит от q и U.
- зависит от геометрических размеров проводников, их формы, взаимного расположения, электрических свойств среды между проводниками.

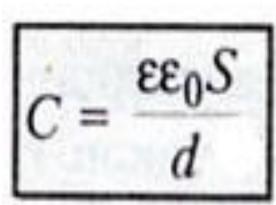

Единицы измерения в СИ: (Ф - фарад)


$$[C] = K_{\Lambda}/B = \Phi$$
 1 мк $\Phi = 10^{-6} \Phi$
1 н $\Phi = 10^{-9} \Phi$
1 п $\Phi = 10^{-12} \Phi$

КОНДЕНСАТОРЫ

Конденсаторы - электротехническое устройство, накапливающее заряд (два проводника, разделенных слоем диэлектрика).

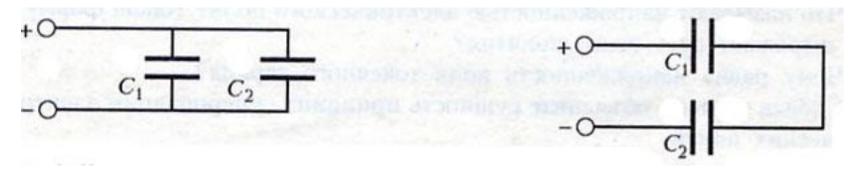

где d много меньше размеров проводника. Обозначение на электрических схемах:



Виды конденсаторов:

- 1. по виду диэлектрика: воздушные, слюдяные, керамические, электролитические
- 2. по форме обкладок: плоские, сферические.
- 3. по величине емкости: постоянные, переменные (подстроечные).

Электроемкость плоского конденсатора

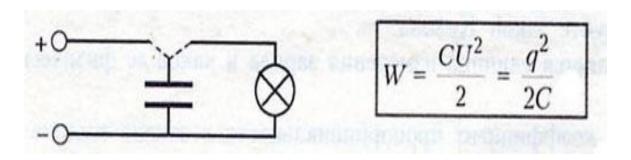


где S - площадь пластины (обкладки) конденсатора d - расстояние между пластинами ео - электрическая постоянная е - диэлектрическая проницаемость диэлектрика

Включение конденсаторов в электрическую цепь

последовательное

параллельное


$$C = C_1 + C_2.$$

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}.$$

ЭНЕРГИЯ ЗАРЯЖЕННОГО КОНДЕНСАТОРА

Конденсатор - это система заряженных тел и обладает энергией. Энергия любого конденсатора:

где С - емкость конденсатора

q - заряд конденсатора

U - напряжение на обкладках конденсатора

Энергия конденсатора равна работе, которую совершит электрическое поле пр сближении пластин конденсатора вплотную,

или равна работе по разделению положительных и отрицательных зарядов, необходимой при зарядке конденсатора.

ЭНЕРГИЯ ЭЛЕКТРИЧЕСКОГО ПОЛЯ КОНДЕНСАТОРА

Энергия конденсатора приблизительно равна квадрату напряженности эл. поля внутри конденсатора.
Плотность энергии эл. поля конденсатора:

$$\mathbf{W} = \frac{1}{2} \varepsilon_0 \varepsilon \quad E^2$$

Проверка исправности конденсаторов

Неисправностями конденсатора являются: пробой диэлектрика конденсатора и внутренний обрыв его выводов. Пробой конденсатора легко обнаруживается с помощью омметра (сопротивление конденсатора будет мало). Внутренний обрыв выводов конденсатора обнаруживается только при измерении его емкости (в этом случае его емкость составляет, как правило, десятые доли или единицы пикофарад).

Измерение емкости конденсаторов

- Существуют различные методы измерения емкости:
- □ метод амперметра-вольтметра
- □ мостовой метод
- □ метод баллистического гальванометра
- □ по времени разряда конденсатора
 - через резистор известного сопротивления,
- □ резонансный метод

Виды конденсаторов

Промышленные конденсаторы

Испарительный конденсатор

конденсаторные батареи

