Исследовательский урок физики в 10 классе исследования изопроцессов в ГАЗАХ. ПРОВЕРКА СПРАВЕДЛИВОСТИ ГАЗОВЫХ ЗАКОНОВ.

ЦЕЛЬ: ЭКСПЕРИМЕНТАЛЬНО УСТАНОВИТЬ ВЗАИМОСВЯЗЬ ТЕРМОДИНАМИЧЕСКИХ ПАРАМЕТРОВ ГАЗА ОПРЕДЕЛЕННОЙ МАССЫ В РАЗЛИЧНЫХ ЕГО СОСТОЯНИЯХ.

Повторение

ЧТО ЯВЛЯЕТСЯ ОБЪЕКТОМ ИЗУЧЕНИЯ МКТ?

ЧТО В МКТ НАЗЫВАЮТ ИДЕАЛЬНЫМ ГАЗОМ?

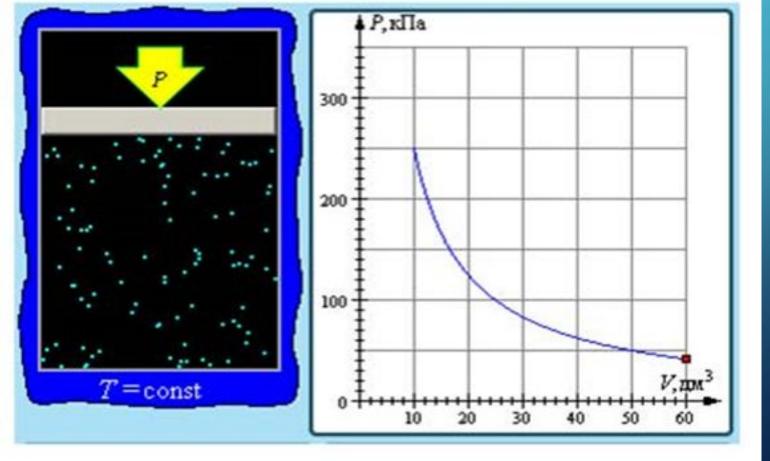
ДЛЯ ТОГО ЧТОБЫ ОПИСАТЬ СОСТОЯНИЕ ИГ ИСПОЛЬЗУЮТ ТРИ ТЕРМОДИНАМИЧЕСКИХ МАКРОСКОПИЧЕСКИХ ПАРАМЕТРА. КАКИЕ?

НИ ОДИН ТЕРМОДИНАМИЧЕСКИЙ ¹ ПАРАМЕТР НЕЛЬЗЯ ИЗМЕНИТЬ, НЕ ЗАТРОНУВ ОДИН, А ТО И ДВА ДРУГИХ ПАРАМЕТРА. КАКИМ УРАВНЕНИЕМ ВЗАИМОСВЯЗАНЫ ВСЕ ТРИ ТД ПАРАМЕТРА?

НАЗОВИТЕ <u>МИКРОСКОПИЧЕСКИЕ</u> ПАРАМЕТРЫ ИДЕАЛЬНОГО ГАЗА.

КАК СОЗДАЁТСЯ ДАВЛЕНИЕ ГАЗА?

КАК ТЕРМОДИНАМИЧЕСКИЙ ПАРАМЕТР ДАВЛЕНИЕ СВЯЗАН С МИКРОСКОПИЧЕСКИМИ ПАРАМЕТРАМИ?


С КАКИМ МИКРОСКОПИЧЕСКИМ ПАРАМЕТРАМ СВЯЗАНА ТЕМПЕРАТУРА?

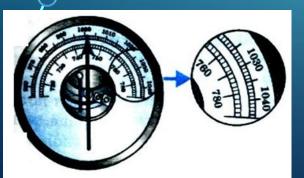
КАК ОБЪЁМ СВЯЗАН С МИКРОСКОПИЧЕСКИМИ ПАРАМЕТРАМИ?

КАК НАЗЫВАЕТСЯ ПРОЦЕСС, ПРИ КОТОРОМ ОДИН ИЗ МАКРОСКОПИЧЕСКИХ ПАРАМЕТРОВ СОСТОЯНИЯ ДАННОЙ МАССЫ ГАЗА ОСТАЕТСЯ ПОСТОЯННЫМ?

Термин	Происхождение	Значение
149.Диаграмма	Diagramma (гр)	Рисунок, чертеж
150.Изо	Isos (rp)	Равный, одинаковый. подобный
151.Изобара	Isos + baros (rp)	Одинаковый + тяжесть
152.Изотерма	Isos + termos (гр)	Одинаковый + тепло
153.Изохора	Isos +chora (гр)	Одинаковый + занимаемое место

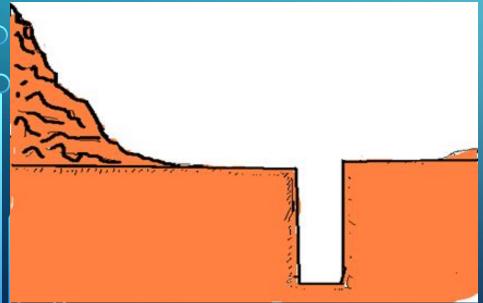
НАЗЫВАЕТСЯ ИЗОТЕРМИЧЕСКИМ?

КАКОМУ ЗАКОНУ ОН ПОДЧИНЯЕТСЯ? В ЧЕМ СОСТОИТ ЭТОТ ЗАКОН?



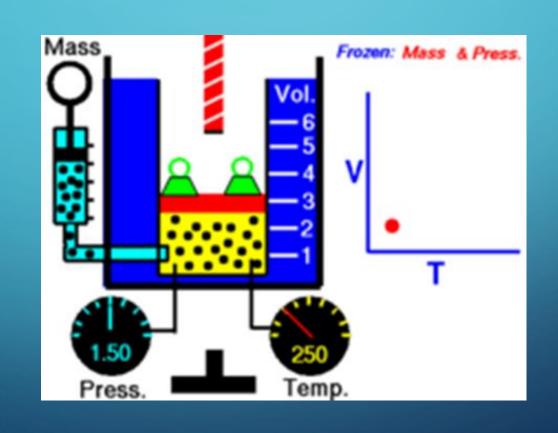
Бойль Роберт (25.01.1627-30.12.1691) – англ. химик, физик и философ, член Лондонского королевского общества.

Физические работы посвящены молекулярной физике, изучению световых и электрических явлений, гидростатике, акустике, теплоте, механике. В 1660 г усовершенствовал воздушный насос Герике.

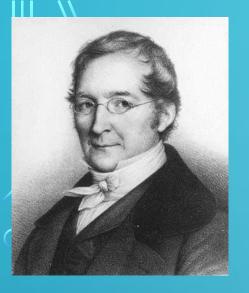


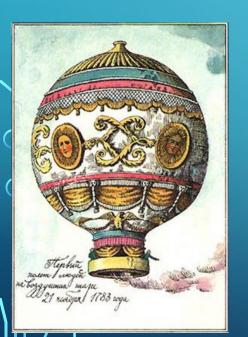
Показал, что теплая вода может закипеть при разрежении воздуха. В 1661 г открыл закон изменения объема воздуха с изменением давления. Для своих опытов сконструировал барометр, ввел (1662-1663) название «барометр».

Принадлежал к высшим кругам английской аристократии. Его отличала большая скромность. Когда ему предложили



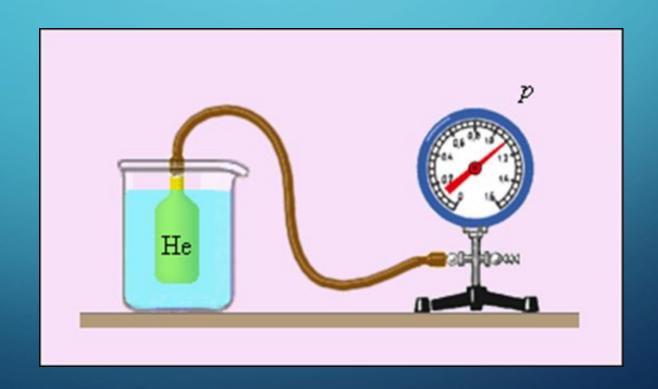
МАРИОТТ ЭДМ (1620-12.05.1684) – ФРАНЦУЗСКИЙ ФИЗИК, ЧЛЕН ФРАНЦУЗСКОЙ АН, ОДИН ИЗ ЕЕ ОСНОВАТЕЛЕЙ. БЫЛ ИГУМЕНОМ МОНАСТЫРЯ СВ.МАРТИНА ВБЛИЗИ ДИЖОНА.


РАБОТЫ ОТНОСЯТСЯ К
МЕХАНИКЕ, ТЕПЛОТЕ, ОПТИКЕ. В
1667 ОТКРЫЛ ЗАКОН ИЗМЕНЕНИЯ
ОБЪЕМА ВОЗДУХА С ИЗМЕНЕНИЕМ
ДАВЛЕНИЯ (ЗАКОН БОЙЛЯМАРИОТТА).

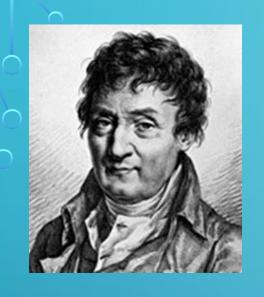

ПРЕДСКАЗАЛ РАЗНЫЕ ПРИМЕНЕНИЯ ЭТОГО ЗАКОНА, В ЧАСТНОСТИ – РАСЧЕТ ВЫСОТЫ МЕСТНОСТИ ПО ДАННЫМ

КАКОЙ ПРОЦЕСС НАЗЫВАЕТСЯ ИЗОБАРНЫМ?

КАКОМУ ЗАКОНУ ОН ПОДЧИНЯЕТСЯ? В ЧЕМ СОСТОИТ ЭТОТ ЗАКОН?



ФРАНЦУЗСКИИ ФИЗИК И ХИМИК, ЧЛЕН ПАРИЖСКОЙ АН.


РАБОТЫ ОТНОСЯТСЯ К МОЛЕКУЛЯРНОЙ ФИЗИКЕ, ТЕПЛОТЕ. В 1802 ГОДУ НЕЗАВИСИМО ОТ ДАЛЬТОНА ОТКРЫЛ ОДИН ИЗ ГАЗОВЫХ ЗАКОНОВ (ЗАКОН ГЕЙ-ЛЮССАКА).

БЫЛ ОТВАЖНЫМ ИССЛЕДОВАТЕЛЕМ. В 1802 ГОДУ ДВАЖДЫ ОСУЩЕСТВИЛ ПОЛЕТЫ НА ВОЗДУШНОМ ШАРЕ (НА ВЫСОТУ 7 КМ), ВО ВРЕМЯ КОТОРЫХ ВЫПОЛНИЛ РЯД НАУЧНЫХ ИССЛЕДОВАНИЙ, В ЧАСТНОСТИ – ИЗУЧАЛ ТЕМПЕРАТУРУ И ВЛАЖНОСТЬ ВОЗДУХА. В 1807 ГОДУ УСТАНОВИЛ ПОНИЖЕНИЕ ТЕМПЕРАТУРЫ ВОЗДУХА ПРИ ЕГО РАСШИРЕНИИ. ИЗОБРЕЛ РЯД ПРИБОРОВ. МНОГО РАЗ БЫЛ РАНЕН ПРИ ВЗРЫВАХ В ЛАБОРАТОРИИ И УМЕР ОТ ОЖОГОВ.

КАКОЙ ПРОЦЕСС НАЗЫВАЕТСЯ ИЗОХОРНЫМ?

КАКОМУ ЗАКОНУ ОН ПОДЧИНЯЕТСЯ? В ЧЕМ СОСТОИТ ЭТОТ ЗАКОН?

(12.11.1746-7.04.1823) — ФРАНЦУЗСКИЙ ФИЗИК И ХИМИК, ЧЛЕН ПАРИЖСКОЙ АН, В 1816 — ПРЕЗИДЕНТ. ИССЛЕДОВАЛ РАСШИРЕНИЕ ГАЗОВ, В 1787

ИССЛЕДОВАЛ РАСШИРЕНИЕ ГАЗОВ, В 1787 УСТАНОВИЛ ЗАКОН ИЗМЕНЕНИЯ ДАВЛЕНИЯ ДАННОЙ МАССЫ ИДЕАЛЬНОГО ГАЗА С ИЗМЕНЕНИЕМ ТЕМПЕРАТУРЫ ПРИ ПОСТОЯННОМ ОБЪЕМЕ (ЗАКОН ШАРЛЯ).

СРАЗУ ПОСЛЕ БРАТЬЕВ МОНГОЛЬФЬЕ ПОСТРОИЛ ВОЗДУШНЫЙ ШАР ИЗ ПРОРЕЗИНЕННОЙ ТКАНИ И ПЕРВЫЙ ИСПОЛЬЗОВАЛ ДЛЯ НАПОЛНЕНИЯ ВОДОРОД. ОСУЩЕСТВИЛ ПОЛЕТ НА ЭТОМ ШАРЕ 1783. ИЗОБРЕЛ РЯД ПРИБОРОВ. ПЕРВЫМ ПОПЫТАЛСЯ ПОЛУЧИТЬ ФОТОГРАФИЧЕСКОЕ ИЗОБРАЖЕНИЕ.

Экспериментальная часть урока

Группа № 1 Исследование изохорного процесса

Группа № 3 Исследование изобарного процесса

Группа № 2 Исследование изотермического процесса

Изохорное охлаждение

T ₁ , K	р ₁ , Па	T ₂ , K	h _B , M	$p_{_{\rm B}}$, Πa	р ₂ , Па	p ₁ /T ₁	p ₂ /T ₂

Изотермическое сжатие

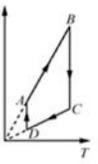
р ₁ , Па	L ₁ , M	h _B , M	р _в , Па	р ₂ , Па	L,M	L ₂ , M	$\mathbf{p_1} \cdot \mathbf{L_1}$	$p_2 \cdot L_2$

Изобарное сжатие

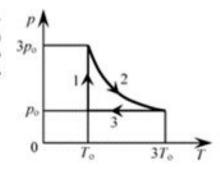
L ₁ ,mm	T ₁ , K	T ₂ , K	Δ L, mm	L ₂ , MM	L_1/T_1	L ₂ /T ₂

Сдел ать выво ды

ФИЗИКА


3/7

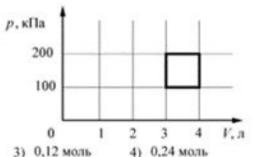
- Как изменится давление разреженного одноатомного газа, если абсолютная температура газа уменьшится в 2 раза, а концентрация молекул увеличится в 2 раза?
- 1) увеличится в 4 раза
- 2) уменьшится в 4 раза
- 3) увеличится в 2 раза
- 4) не изменится


AIO

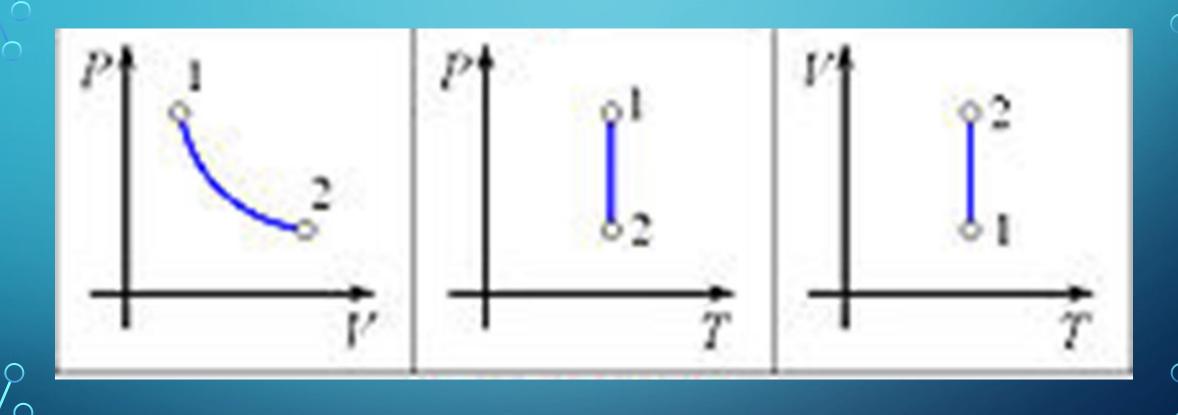
На рисунке представлен график цикла, проведённого рас одноатомным идеальным газом. На каком из участков внутренняя энергия газа уменьшалась? Количество вещества газа постоянно.

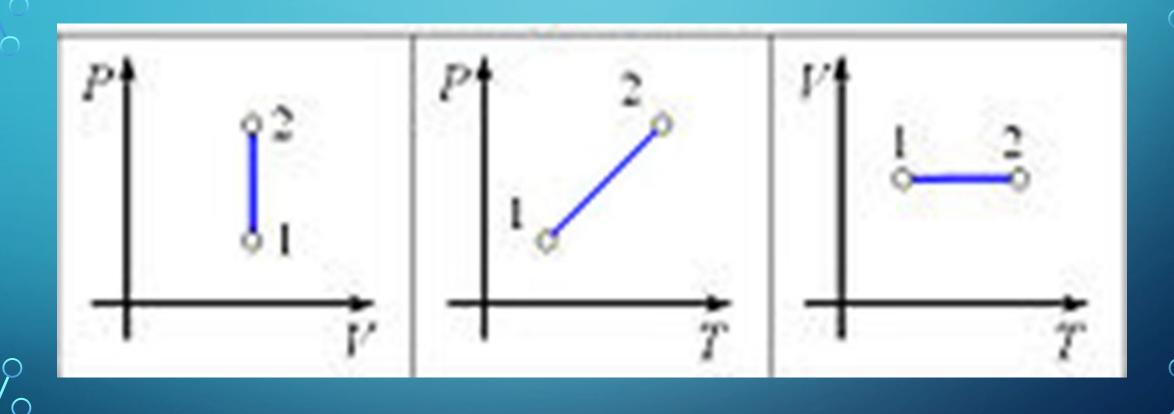
- 1) DA
- 2) AB
- 3) CD
- 4) BC

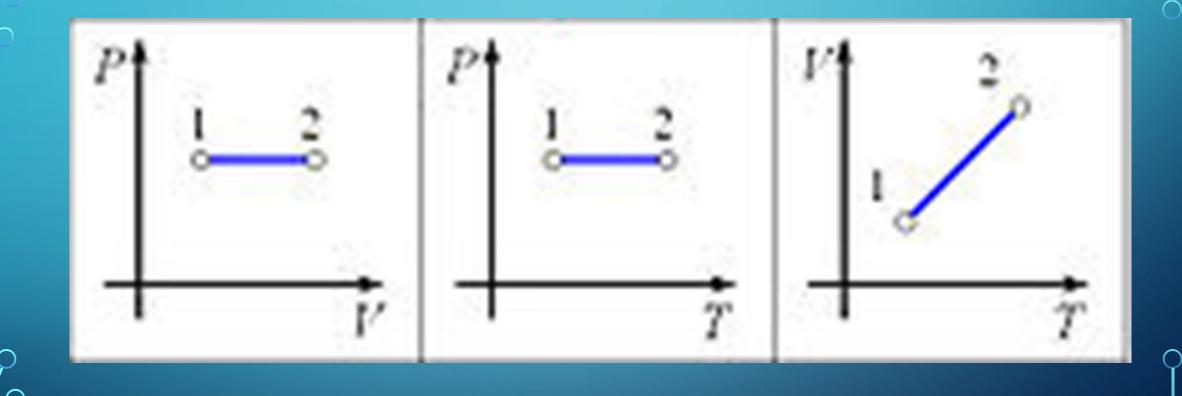
На рТ-диаграмме отображена последовательность трёх процессов (1 → 2 → 3) изменения состояния 2 моль идеального газа. Какова эта последовательность процессов в газе?


- 1) сжатие → нагревание → охлаждение
- 2) нагревание → расширение при постоянной температуре → сжатие
- 3) охлаждение → расширение при постоянной температуре → сжатие
- 4) расширение → нагревание → охлаждение

С идеальным газом происходит циклический процесс, диаграмма р-V которого представлена на рисунке. Наинизшая температура,


достигаемая газом в этом процессе, составляет 300 К. Определите количество вещества этого газа.




ИЗОТЕРМ Ы

ИЗОХОР

ИЗОБАРЫ

1. КАК ИЗМЕНИТСЯ ДАВЛЕНИЕ ИДЕАЛЬНОГО ОДНОАТОМНОГО ГАЗА ПРИ УМЕНЬШЕНИИ ЕГО ОБЪЁМА В 4 РАЗА И УВЕЛИЧЕНИЕ АБСОЛЮТНОЙ ТЕМПЕРАТУРЫ В 2 РАЗА?

2. КАК ИЗМЕНИТСЯ ТЕМПЕРАТУРА ГАЗА, ЕСЛИ ПРИ УВЕЛИЧЕНИИ ДАВЛЕНИЯ В 2 РАЗА ЕГО ОБЪЁМ УМЕНЬШИТСЯ В 10 **PA3?**

3. ПРИ ТЕМПЕРАТУРЕ Т И ДАВЛЕНИИ Р ОДИН МОЛЬ ИДЕАЛЬНОГО ГАЗА ЗАНИМАЕТ ОБЪЕМ V. КАКОВ ОБЪЕМ ДВУХ МОЛЕЙ ГАЗА ПРИ ТОМ ЖЕ ДАВЛЕНИИ И ТЕМПЕРАТУРЕ?

ПОДВЕДЕНИЕ ИТОГОВ УРОКА

• Экскурс в историю

• Лингвистичекое происхождение терминов

- Графическое представление процессов
- Убедились в справедливости газовых законов: <u>Закона Бойля-Мариотта</u> <u>Закона Гей-Люссака</u>

Домашнее задание Решить задачи (см. прикреплённый файл)