ПОСТОЯННЫЙ ТОК

Подготовила: учитель физики МБОУ СОШ №12 ст. Анапская Сорокина Н.В.

Постоянный электрический ток – это упорядоченное движение заряженных частиц.

•Характеристики электрического тока:

1. Сила тока (I) — это физическая величина, показывающая с какой скоростью движутся заряженные частицы по проводнику.

$$I = \frac{q}{t}$$
 $q = I \cdot t$ $t = \frac{q}{I}$ $I = \left[\frac{K\pi}{c}\right] = [A] - Amnep$

Прибор для измерения силы тока в цепи

– амперметр (подключается последовательно!) **2.** Напряжение [разность потенциалов] (U) — это физическая величина, равная отношению работы тока в проводнике к электрическому заряду.

$$egin{aligned} oldsymbol{U} &= rac{A}{q} & A &= oldsymbol{U} oldsymbol{q} & q &= rac{A}{U} \ oldsymbol{U} &= oldsymbol{\left[\frac{A}{K}\right]} &= oldsymbol{\left[B\right]} - oldsymbol{\mathrm{B}} oldsymbol{\mathrm{D}} oldsymbol{\mathrm{B}} oldsymbol{\mathrm{D}} \end{split}$$

Прибор для измерения напряжения в цепи — вольтметр (подключается параллельно!)

3. Сопротивление (R) — это физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока.

$$R = \frac{\rho \cdot l}{S}$$
 $S = \frac{\rho \cdot l}{R}$ $l = \frac{S \cdot R}{\rho}$ $\rho = \frac{S \cdot R}{l}$ $R = [OM] - OM$, ρ - удельное сопротивление проводника (табл.значение)

Прибор для регулирования тока в цепи – реостат.

Прибор с определенным сопротивлением в цепи – **резистор.**

Закон Ома для участка цепи

Закон Ома для полной цепи

R+r

Сила тока (А)

 $I = \frac{\mathcal{E}}{}$

ЭДСэлектродвижущая сила источника тока (B)

Сопротивление нагрузки (Ом)

Внутреннее сопротивление источника тока (Ом)

 Сила тока в цепи прямо пропорциональна электродвижущей силе источника тока и обратно пропорциональна сумме электрических сопротивлений внешнего и внутреннего участков цепи.

Соединение проводников

Последовательное соединение	Параллельное соединение
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R_1 R_2 R_2 R_2 R_2 R_3
R R R	R U +
$U = U_1 + U_2 + \ldots + U_i$	$U=U_1=U_2=\ldots=U_i$
$I=I_1=I_2=\ldots=I_i$	$I = I_1 + I_2 + \ldots + I_i$
$R = R_1 + R_2 + \ldots + R_i$	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_i}$