Государственное автономное профессиональное образовательное учреждение «Краевой политехнический колледж»

ЗАКОНЫ НЬЮТОНА

Верёвкина Ирина Сергеевна, преподаватель ГАПОУ «Краевой политехнический колледж»

Закон инерции

Тело, покоится или движется равномерно прямолинейно (v=const; a=0), если на это тело не действуют другие тела или действия других тел скомпенсированы

Тела, подчиняющиеся закону инерции, обладают свойством инерции

Инерция – это способность тела сохранять положение равновесия или равномерного прямолинейного движения

Системы отсчета, подчиняющиеся закону инерции, называются инерциальными

Инерциальная СО — это система отсчета, которая находится в состоянии покоя или движется равномерно прямолинейно

Первый закон Ньютона

Существуют такие системы отсчета, относительно которых поступательно движущееся тело сохраняет свою скорость постоянной, если на него не действуют другие тела (или действия других тел компенсируются)

Примеры проявления закона:

- по инерции движутся все тела в космосе
- полет стрелы из лука, снаряды из пушки и пули из ружья
- •полет ракеты в космосе с выключенными двигателями

Инертность тела

свойство тела, которое состоит в том, что для изменения скорости тела требуется время

Как изменяется скорость?

быстрее медленнее

Легковое авто Грузовое авто

Пустой вагон Груженый вагон

Стул Стол

Менее инертны

Более инертны

Вывод: чем тело инертнее, тем время изменения скорости будет больше

Macca

количественная мера инертности тела

Скалярная величина

Способы определения массы тела:

 $m = \rho V$

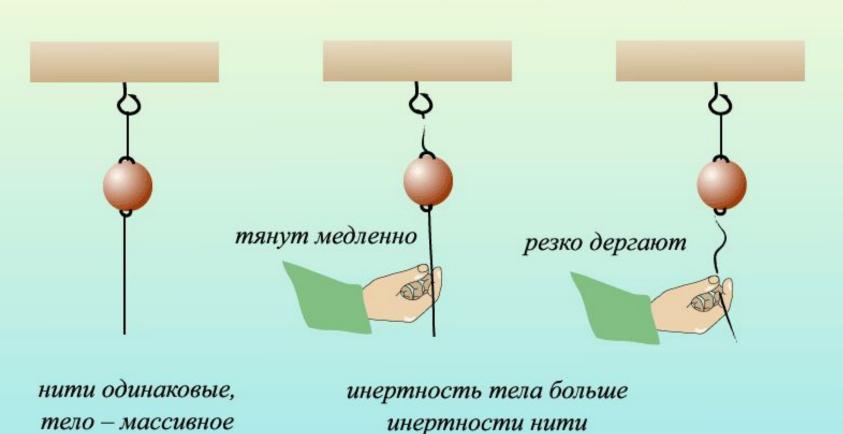
- 2. по взаимодействию тел: $\frac{1}{m_2} = \frac{1}{a_1}$
- 3. Взвешивание на весах Взвесить – сравнить массу тела с массой эталона

Сила

характеризует действие одного тела на другое

Векторная величина

Сила - причина ускорения тела


Ускорение направлено туда, куда направлена сила, действующая на тело:

$$\vec{F} \uparrow \uparrow \vec{a}$$

Объясни опыт

Инертность тел

 свойство тел не мгновенно изменять свою скорость. Из двух тел более инертно то, масса которого больше

Второй закон Ньютона

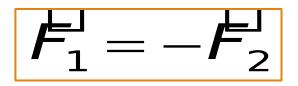
Равнодействующая всех сил, действующих на тело, равна произведению массы тела на сообщаемое этой силой ускорение

$$\overrightarrow{R} = m\overrightarrow{a}$$

R – равнодействующая всех сил

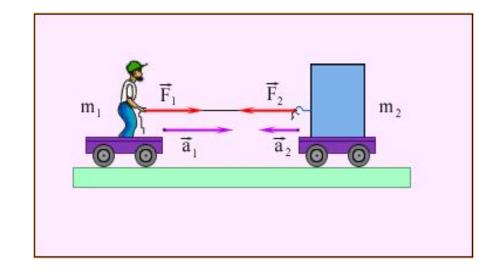
$$\vec{R} = \sum \vec{F}$$

Особенности:


- справедлив для всех сил
- •R причина ускорения
- $\vec{R} \uparrow \uparrow \vec{a}$

Примеры:

- расчет тяговой силы машины или поезда
- •спортсмены рассчитывают силу удара
- расчет скорости машины по тормозному пути


Третий закон Ньютона

Тела действуют друг на друга с силами, равными по модулю и противоположными по направлению

Особенности:

- •силы возникают парами
- •возникающие силы одной природы
- •силы приложены к различным телам, поэтому не уравновешивают друг друга

Примеры

Вывод

1.
$$F = 0$$
 $P\Pi \Box$ $(a = 0, v = const)$

если равнодействующая сила равна нулю то тело покоится или движется равномерно и прямолинейно

2.
$$F \neq 0$$
 РУД ($a = F/m$)

если силы нескомпенсированы, то тело движется равноускоренно

Решение задач

- 1. Тело массой 4 кг под действием некоторой силы приобрело ускорение 2 м/с². Какое ускорение приобретает тело массой 10 кг под действием такой же силы?
- 2. Масса легкового автомобиля равна 2 т, а грузового 8 т. Сравнить ускорения автомобилей, если сила тяги грузового автомобиля в 2 раза больше, чем легкового.
- Мяч массой 0,5 кг после удара, длящегося 0,02 с, приобретает скорость 10 м/с. Найти среднюю силу удара.
- 4. На рисунке дан график изменения скорости тела массой 3 кг. Найдите силу, действующую на тело на каждом этапе движения.