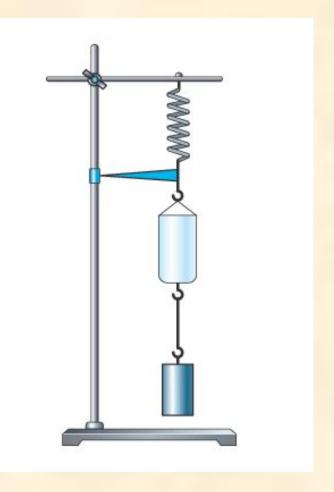
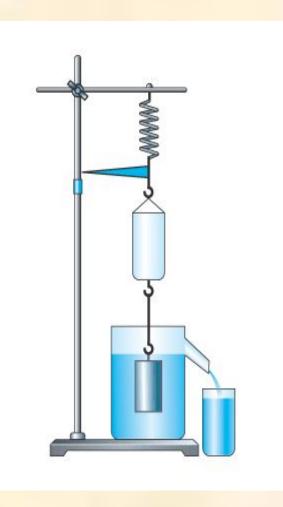


АРХИМЕДОВА СИЛА

Архимед (287-212 до н.э.)



Определите выталкивающую силу, действующую на погруженный в воду цилиндр.

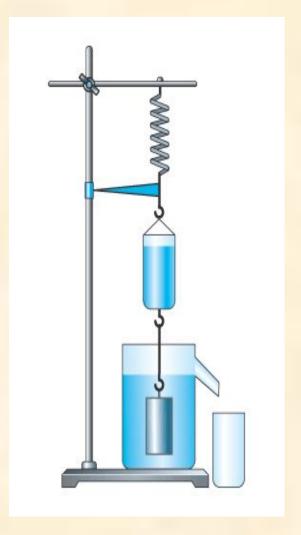


ЭКСПЕРИМЕНТИРУЕМ

Подвесим к пружине небольшое ведерко и тело цилиндрической формы. Отметим положение стрелки-указателя на штативе.

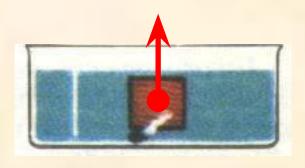
ЭКСПЕРИМЕНТИРУЕМ

Поместим тело в сосуд.


Почему сократилась пружина при погружении цилиндра в воду?

А каков объем воды, вылившейся из сосуда?

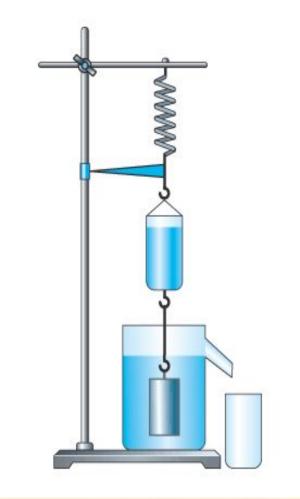
ЭКСПЕРИМЕНТИРУЕМ


Что нужно сделать, чтобы пружина заняла первоначальное положение?

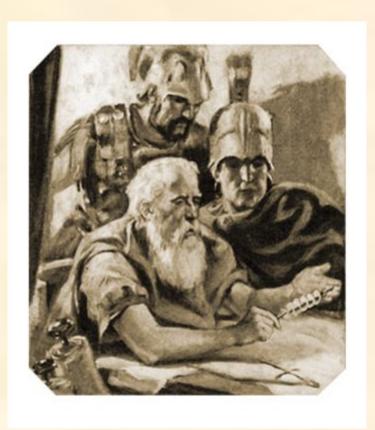
А как можно увеличить вес ведерка?

вывод

Сила, выталкивающая целиком погруженное в газ или жидкость тело, равна весу газа или жидкости в объеме этого тела.


$$F_A = P_{x}$$

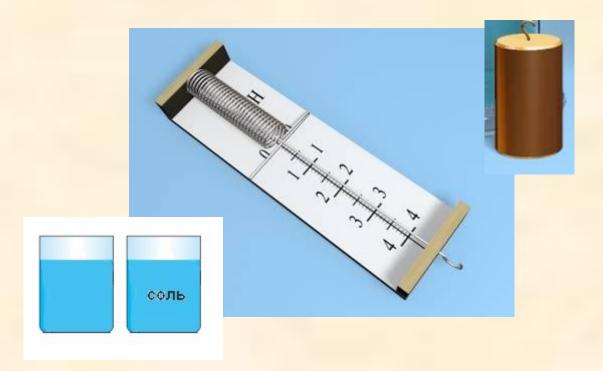
ЗАКОН АРХИМЕДА


Сила, выталкивающая целиком погруженное в жидкость или газ тело, равна весу жидкости или газа в объеме этого тела.

$$F_{A} = P_{x}$$

$$F_{A} = g \rho_{x} V_{T}$$

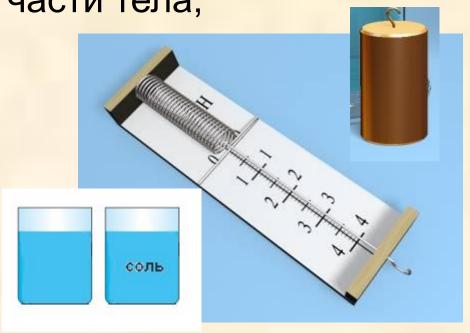
ЛЕГЕНДА ОБ АРХИМЕДЕ


Величайший древнегреческий ученый, математик, физик и изобретатель (287 г. до н. э. – 212 г. до н.э.)

Царь Гиерон: «Золотая ли корона?»

ЭКСПЕРИМЕНТИРУЙ!

Цель исследования:


Выяснить, от каких величин зависит архимедова сила, а от каких – не зависит.

ЭКСПЕРИМЕНТИРУЙ!

Выясните, от каких величин зависит архимедова сила, а от каких – не зависит:

от объема погруженной части тела, от плотности тела, от веса тела, от глубины погружения, от плотности жидкости.

НАШИ ВЫВОДЫ

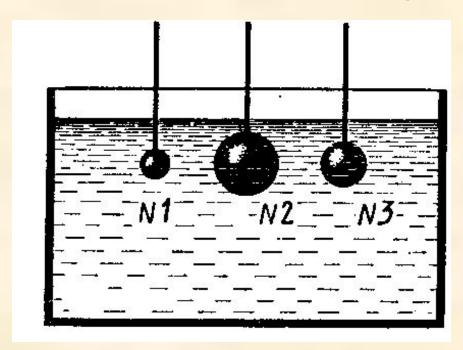
Архимедова сила			
зависит от	не зависит от		
объема	плотности тела		
погруженной части			
тела			
плотности	веса тела		
жидкости			
	глубины погружения		

 $Fa=P_B-P_m$ $F_a = P_{x}$ $P_{x}=m_{x}g$ $m_{x} = \rho_{x} V_{x}$ $V_{x}=V_{T}$ $F_a = \rho_{\mathsf{x}} g V_{\mathsf{T}}$

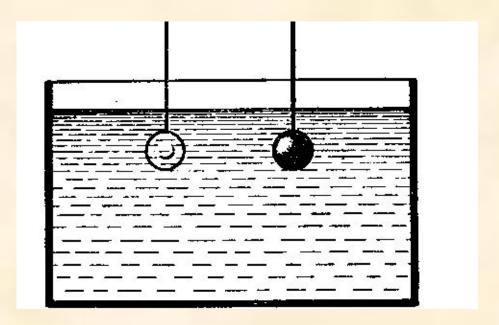
ЗАПОМНИ!

$$F_{\text{Apx}} = P_{\text{W/}\text{G}} = g \cdot \rho_{\text{W/}\text{G}} \cdot V_{\text{T}}$$

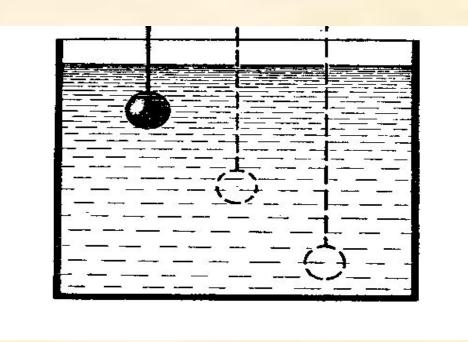
F_{Apx} – архимедова сила, Н

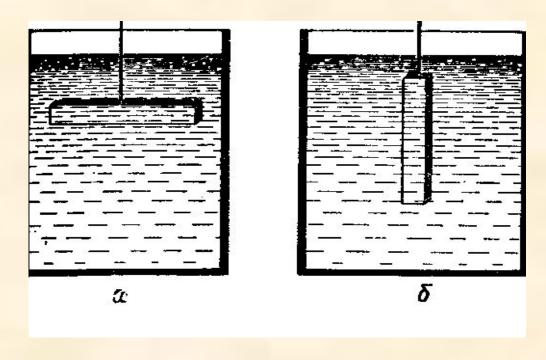

Рж/г – вес жидкости/газа, вытесненный телом, Н

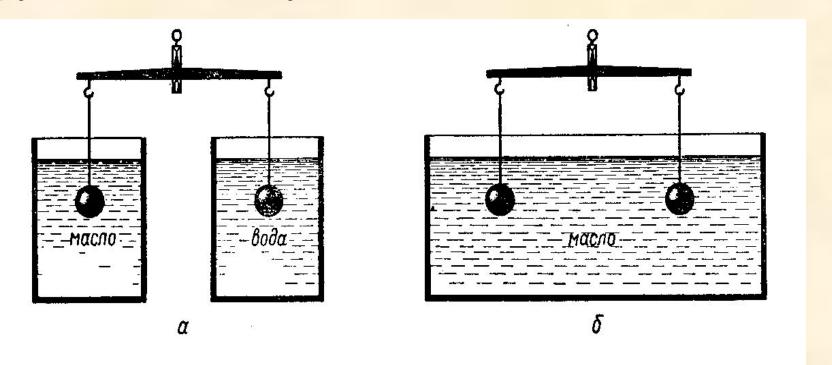
 $V_{\text{т}}$ — объем погруженной в жидкость/газ части тела, м³


 $\rho_{\text{ж/г}}$ — плотность жидкости/газа, кг/м³

g — ускорение свободного падения, м/с²


На какой из опущенных в воду стальных шаров действует наибольшая выталкивающая сила?


Одинакового объема тела – стеклянное и стальное – опущены в воду. Одинаковы ли выталкивающие силы, действующие на них?


Как изменится выталкивающая сила на данное тело при погружении его в жидкости на разную глубину?

Изменится ли выталкивающая сила, если брусок, находящийся в жидкости, перевести из положения <u>а</u> в положение <u>б</u>?

Подвешенные к коромыслу весов одинаковые шары погрузили в жидкость сначала так, как показано на рисунке <u>а</u>, а затем так, как показано на рисунке <u>б</u>. В каком случае равновесие весов нарушится? Почему?

Кусок стального рельса находится на дне реки. Его приподняли и поставили вертикально. Изменилась ли при этом действующая на него выталкивающая сила, если при подъеме часть рельса окажется над водой?

Архимедова сила

В каждом столбце таблицы выберите верный, на ваш взгляд, ответ.

1. Обозначение	2. Единица измерения	3. Формула	4. Прибор
1) P	1) H	1) gph	1) весы
2) F _{тр.}	2) A	2) $g\rho_{T}V_{T}$	2) манометр
3) S	3) Па	3) gm	3) динамометр
4) F _A	4) кг	4) ρV	4) барометр
5) A	5) M	5) $g\rho_{x}V_{T}$	5) секундомер

Домашнее задание

Опыт «Картезианский водолаз».

- **§**49;
- экспериментальное задание.