ДЕТАЛИ МАШИН И МЕХАНИЗМОВ

Основные положения и понятия раздела

Дудко О.Н., преподаватель ЛК ГрГУ им. Я.Купалы

Назначение курса

Основное назначение курса

«Детали машин и основы конструирования» – это наука о:

Взаимосвязь инженерных дисциплин

Для изучения курса «Детали машин и основы конструирования» **требу** следующих дисциплин:

- начертательная геометрия;
- машиностроительное черчение;
- теоретическая механика;
- теория механизмов и машин;
- сопротивление материалов;
- технология металлов;
- технология машиностроения.

Связь дисциплины "Детали машин и основы конструирования" с другими дисциплинами

Взаимосвязь инженерных дисциплин

Схема показывает взаимосвязь общеинженерных дисциплин.

Машиностроительное черчение

Начертательная геометрия

Грамотное выполнение всех видов чертежей в машиностроении

Введение

Связь дисциплины "Детали машин и основы конструирования" с другими дисциплинами

Взаимосвязь инженерных дисциплин

Схема показывает взаимосвязь общеинженерных дисциплин.

Теоретическая механика

Теория механизмов и машин

B

Определение законов движения и усилий, действующих на объекты

Связь дисциплины "Детали машин и основы конструирования" с другими дисципли

Взаимосвязь инженерных дисциплин

Схема показывает взаимосвязь общеинженерных дисциплин.

Сопротивление материалов

Выполнение расчетов объектов на прочность жесткость и устойчивость

Связь дисциплины "Детали машин и основы конструирования" с другими дисципли

Взаимосвязь инженерных дисциплин

Схема показывает взаимосвязь общеинженерных дисциплин.

Технология металлов

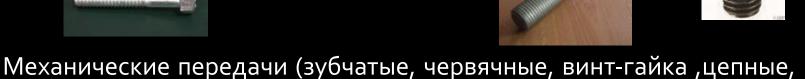
Технология машиностроения

Выбор материалов, формы, термообработки, степени точности, шероховатости поверхностей и технологических условий изготовления деталей машин

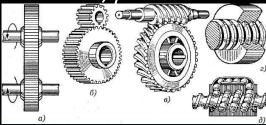
Перечень вопросов:

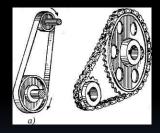
- 1. Цели и задачи курса.
- 2. Машина. Классификация машин.
- 3.Основные определения раздела.
- 4.Понятие о работоспособности изделия.
- 5. Понятие о надежности машины.

Цели и задачи курса


В курсе «Детали машин» изучаются основы расчета на прочность и жесткость деталей машин общего назначения, проводится выбор материалов, изучаются правила конструирования деталей с учетом технологии изготовления и эксплуатации машин.

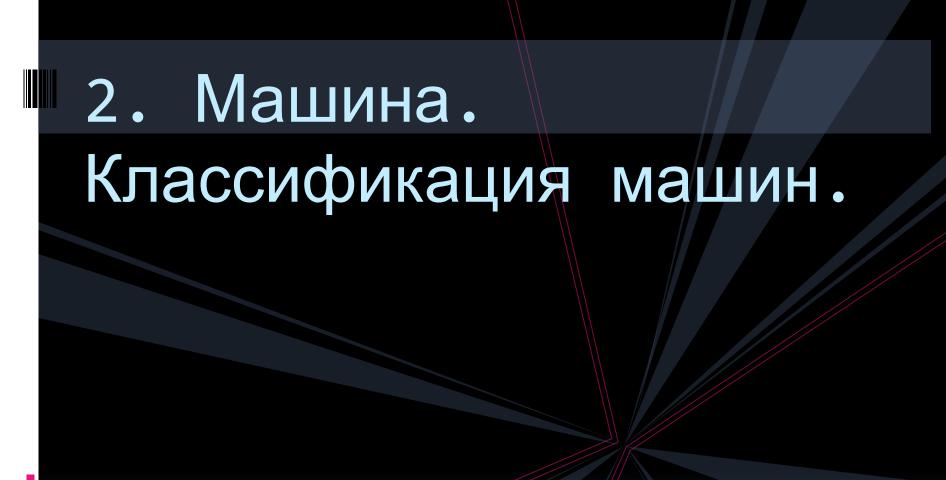
Детали и узлы общего назначения делятся на три основные группы:


1. Детали соединения(болт, шпильки и др.);



ременные);

1. Детали и узлы передач (валы , подшипники, муфты и др.)



механическое устройство, предназначенное для выполнения требуемой полезной работы, связанное с процессом производства.

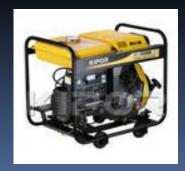
Машина (от латинского machina) - механическое устройство, выполняющее движения с целью преобразования энергии, материалов или информации.

Основное назначение машин - частичная или полная замена производственных функций человека с целью повышения производительности, облегчения человеческого труда или замены человека в недопустимых для него условиях работы.

Машины по характеру рабочего процесса делятся на следующие классы:

Тиласс — машины-двигатели -

преобразующие тот или иной вид энергии в механическую работу (двигатели внутреннего сгорания, турбины и др.);



ІІ класс — машины -преобразователи

(генераторы), преобразующие механическую энергию (полученную от машины-двигателя) в другой вид энергий (например, электрические машины — генераторы тока);

Класс — транспортные машины - преобразуют механическую энергию двигателя в энергию перемещения масс

Транспортные машины

V класс — технологические *машины* (рабочие машины), использующие механическую энергию, получаемую от машиныдвигателя, для выполнения технологического процесса, связанного с изменением свойств, состояния и формы обрабатываемого объекта, а так же для выполнения транспортных операций (металлообрабатывающие станки, сельскохозяйственные машины и

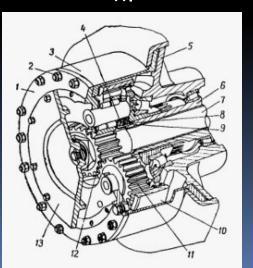
др.)

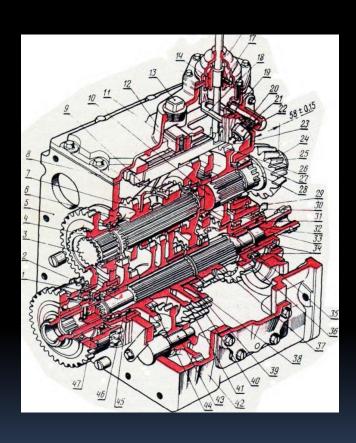
✓ класс — информационные машины - преобразуют и изменяют получаемую информацию (компьютеры, планшеты, калькуляторы и пр.

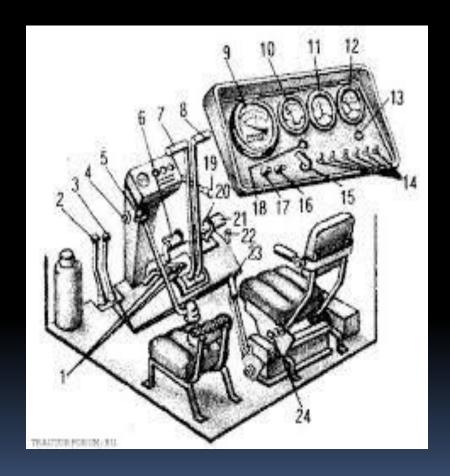
Машина, в которой все преобразования происходят без непосредственного участия человека, называют

3. Основные определения раздела.

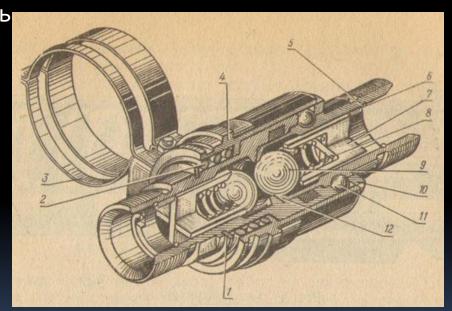
■ Azpezam (om


латинского aggrego присоединяю) - укрупненный унифицированный элемент машины (например, в автомобиле: двигатель, топливоподающий насос), обладающий полной взаимозаменяемостью выполняющий определенные функции в процессе работы машины.

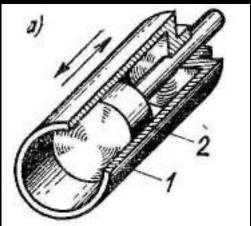


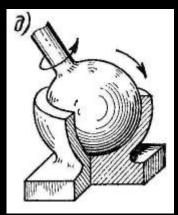

Механизм -

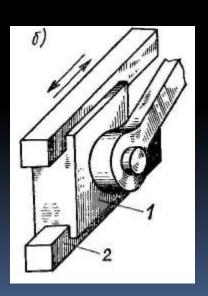
искусственно созданная система материальных тел, предназначенная для преобразования движения одного или нескольких тел в требуемое (необходимое) движение других тел. Примерами механизмов могут служить различные редукторы, коробки передач автомобилей, тракторов и т. П.

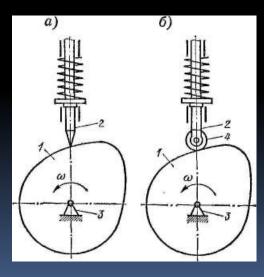

■ Прибор - устройство, предназначенное для измерений, производственного контроля, управления, регулирования и других функций, связанных с получением, преобразованием и передачей информации.

Разрывная муфта для рукавов высокого давления


Сборочная единица (узел) -


изделие или часть его (часть машины), составные части которого подлежат соединению между собой (собираются) на предприятии изготовителе (смежном предприятии). Сборочная единица имеет, как правило, определенное функциональное назначение.




Звено- это твердое тело, входящее в состав механизма.

Подвижное соединение двух соприкасающихся звеньев называется кинематической парой. Кинематические пары бывают <mark>высшие и</mark> низшие. У низших кинематических пар соприкосновение происходит по поверхностям (поршень и цилиндр), у высших – по линиям и точкам (колесо и рельс, кулачковая пара с острым толкателем).

Деталь - наименьшая неделимая (не разбираемая) часть машины, агрегата, механизма, прибора, узла, т. е. деталь - это часть машины, которую изготовляют без сборочных операций.

 В зависимости от сложности изготовления детали, в свою очередь, делятся на простые и сложные.

Простые детали для своего изготовления требуют небольшого числа уже известных и хорошо освоенных технологических операций и изготавливаются при массовом производстве на станкахавтоматах (например, крепежные изделия - болты, винты, гайки, шайбы, шплинты; зубчатые колеса небольших размеров и т.п.).

■ Узлы и детали общего назначения применяются в

большинстве современных машин и приборов (крепежные детали: болты, винты, гайки, шайбы; зубчатые колеса, подшипники качения и т.п.). Их изготовляют ежегодно в больших количествах (в одном легковом автомобиле более пяти тысяч различных типов деталей, более тридцати подшипников), поэтому знание основных методов расчета, правил и норм проектирования, подтвержденных статистикой эксплуатации, очень важно для конструкторской подготовки. Именно такие детали изучаются в курсе деталей машин.

• Сложные детали имеют чаще всего достаточно сложную конфигурацию, а при их изготовлении применяются достаточно сложные технологические операции и используется значительный объем ручного труда, для выполнения которого в последние годы все чаще применяются роботы (например, при сборке-сварке кузовов легковых автомобилей).

Объектом изучения курса «Детали машин и механизмов» являются:

Разъемные соединения допускают многократную переборку. Их основные типы: резьбовые, шпоночные, шлицевые, клеммовые, на закрепительных конических втулках.

Неразъемные соединения не допускают многократной переборки. Для разборки такого соединения его нужно разрушить. Основные типы: сварные, клеевые, паяные, заклепочные, соединения с натягом. Последние относят к неразъемным условно, так как они позволяют проводить сборку и разборку, но не многократно.

Детали передач. В курсе рассматривают механические передачи: зубчатые, планетарные, волновые, червячные, фрикционные, ременные, цепные, винт-гайка и некоторые другие.

Детали, обслуживающие вращательное движение – валы и оси, подшипники качения и скольжения, муфты приводов.

4.Понятие о работоспособности изделия.

Работостособность - состояние изделия, при котором оно способно выполнять заданные функции с параметрами, установленными нормативно- технической документацией.

Попросту говоря, работоспособность изделия
– это его способность нормально выполнять
заданные функции.

Работоспособность количественно оценивается следующими показателями:

Прочность

способность детали выдерживать заданные нагрузки в течение заданного срока без нарушения работоспособности.

Жесткость

детали выдерживать заданные нагрузки без изменения формы и размеров.

Износостойкость

способность детали сопротивляться изнашиванию

Стойкость к специальным воздействиям способность детали сохранять работоспособное состояние при проявлении специальных воздействий (теплостойкость, вибростойкость, радиационная стойкость, коррозионная стойкость и т.п.).

5. Понятие о надежности машины.

■ Надежность – свойство детали или машины в целом выполнять заданные функции с сохранением эксплуатационных показателей в течение требуемого промежутка времени.

 Надежность для стационарного двигателя выражается в часах, для автомобиля – в километрах пробега и т.д.

Показатели качества изделия по надежности:

- безотказность
- долговечность
- ремонтопригодность.

- Безотказность— свойство изделия непрерывно сохранять работоспособность в течение заданного времени.
- Долговечность— свойство изделия длительно сохранять работоспособность до наступления предельного состояния при соблюдении норм эксплуатации. Под предельным понимают такое состояние изделия, при котором его дальнейшая эксплуатация недопустима или нецелесообразна.
- Ремонтопригодность свойство изделия, заключающееся в приспособленности к поддержанию и восстановлению работоспособности путем технического обслуживания и ремонта.

Показатели надежности во времени: наработка, ресурс и срок службы.

- Наработка продолжительность или объем работы изделия (в часах, километрах пробега, числах циклов нагружения).
- Ресурс— суммарная наработка изделия от начала эксплуатации до перехода в предельное состояние (в часах, километрах пробега и др.).
- Срок службы календарная продолжительность эксплуатации изделия от начала до перехода в предельное состояние. Выражают обычно в годах. Срок службы включает наработку изделия и время простоев.

Контрольные вопросы

- 1. Что называется деталью?
- Деталь наименьшая неделимая (не разбираемая) часть машины, агрегата, механизма, прибора, узла, т. е. деталь - это часть машины, которую изготовляют без сборочных операций.
- 2. Как классифицируются машины в зависимости от характера рабочего процесса?
- Машины-двигатели, машины-генераторы, машины-орудия.

3. Что называется механизмом?

- Механизм это устройство, служащее для передачи механического движения.
- 4. Для чего предназначены машины-двигатели?
- Машины-двигатели, преобразуют какой-либо вид энергии в механическую энергию, например электродвигатели, ДВС.
- 5. Для чего предназначены машины-генераторы?
- Машины-генераторы, преобразуют механическую энергию в другой вид энергии, например компрессоры.

Контрольные вопросы

6. Какие требования предъявляются к деталям машин?

 Работоспособность, надежность, технологичность конструкции, эргономичность и эстетичность.

7. Что называют машиной?

 Машина (от латинского тасhina) - механическое устройство, выполняющее движения с целью преобразования энергии, материалов или информации.

8. Что называют передачами?

Передачами называют механизмы передающие энергию двигателя исполнительному органу машины.

9. Что называют прибором?

 Прибор - устройство, предназначенное для измерений, производственного контроля, управления, регулирования и других функций, связанных с получением, преобразованием и передачей информации.

10. Перечислите виды передач

• Цепная, ременная, фрикционная, зубчатая и червячная передачи.

Тест

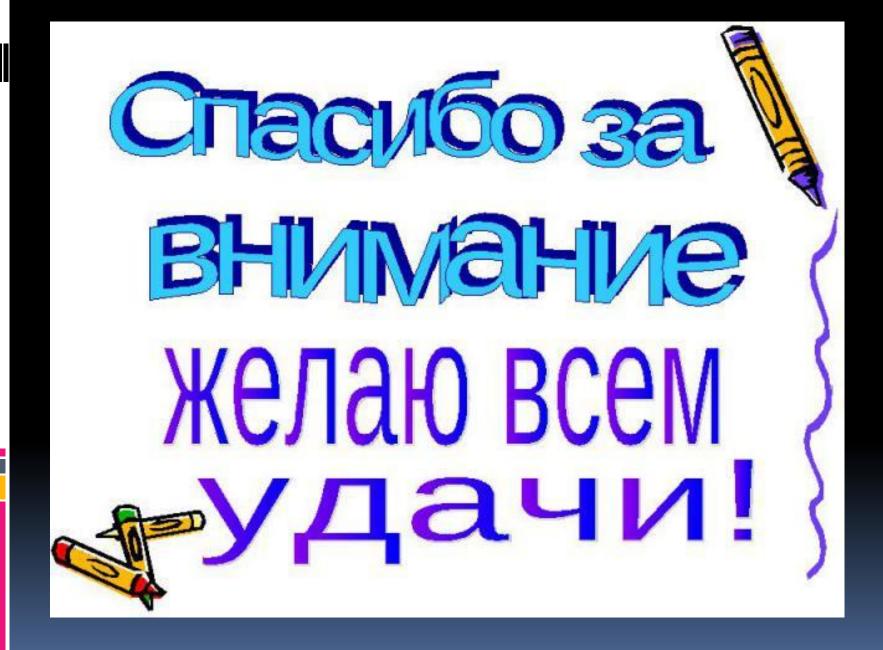
•	1. Как называется у движения?	едачи механи	ческого						
•	А) Машина.	Б) Ме	ханизм.		В) Сборо	чная единица	1.		
•	2. Как называется простейшая неделимая часть машины?								
•	А) Сборочная едині	ица.	Б) Уз	ел.	B)	Деталь.			
•	3. Как называются механизмы, передающие энергию двигателя исполнительному органу машины?								
•	А) Машины.		Б) Пере	дачи.	B)	Агрегаты.			
•	4. Как называются механическую?	машин	ны, кото	рые пре	образую	т любой вид :	энергии в		
•	А) Машины-двигате	ели.	Б) Маші	ины-гене	ераторы.	В) Машины-	орудия.		
	5. Какие передачи	соедин	няются і	тибкой сі	вязью?				
	А) фрикционные,	Б) Цег	тные, I	3) Зубчат	ъе.				

Тест

	6. Как называется комплекс совместно работающих деталей?								
•	А) Узел;	Б) Агрегат;	В) Механизм.						
	7. Какие передачи передают энергию двигателя зацеплением?								
•	А) Фрикционные,	Б) Зубчатые,	В) Ременные.						
	8. Как называется сочетание механизмов, которые служат для преобразования одного вида энергии в другой, или для выполнения полезной работы?								
•	А) Машина.	Б) Механизм.	В) Сборочная единица.						
۰	9. Как называются переборку?	соединения, которі	ые допускают многократну	Ю					
٠	А) Неразъемные;	Б) Универсалі	ьные; В) Разъемные.						
	10. К какому соеди	нению относится св	арочное соединение?						

Б) Универсальному;

В) Разъемному.


А) Неразъемному;

Правильные варианты ответов на тест

- **1**-5.
- 2-B.
- **■** 3-5.
- 4-A.
- **■** 5 **Б**.
- 6-A.
- **■** 7-5.
- 8-A.
- 9-B.
- 10-A.

Список используемой литературы

- 1. Аркуша А.И. : Техническая механика. Теоретическая механика и сопротивление материалов. М. : Высшая школа, 2005. 250с.
- 2. Вереина Л.И. Техническая механика: учеб. пос. для нач. проф. образования. 3-е изд. переработ. и доп. М.: Академия, 2006. -224 с.
- 3. Козлов Ю. С. Основы ремонтного дела. Учеб. пособие М: Высшая школа, 2009г. 256 с. Серия: Для средних сельских профессиональных политехнических училищ.
 - 4. Сафонова, Г.Г. Техническая механика: Учебник / Г.Г. Сафонова, Т.Ю. Артюховская, Д.А. Ермаков. М.: НИЦ ИНФРА-М, 2013. 320 с.

