РЕШЕНИЯ

Избранные задачи по теме «Электромагнетизм (магнитостатика)" из сборника задач по общему курсу физики под редакцией Волькештейн В.С.

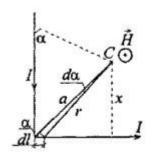
Сохранена нумерация задач, применяемая в учебном пособии

11.10. По длинному вертикальному проводнику сверху вниз идет ток I=8 A. На каком расстоянии а от него напряженность поля, получающегося от сложения земного магнитного поля и поля тока, направлена вертикально вверх?

Горизонтальная составляющая напряженности земногополя $H_r = 16 \text{ A/m}$.

Дано	Решение
I = 8 A	
$I = 8 A$ $H_{c} = 16$	
A/M	
a=?	

11.5. На рисунке изображены сечения двух прямолинейных бесконечно длинных проводников с токами. Расстояния AB = BC = 5 см, токи $I_1 = I_2 = I$ и $I_3 = 2I$. Найти точку на прямой AC, в которой напряженность магнитного поля, вызванного токами I_1 , I_2 и I_3 , равна нулю.


Дано	Решение
AB = BC = 5 cM $I1 = I2 = I$ $I3 = 2I$	$ \begin{array}{c c} I_1 & O \\ $
Найти точку на прямой АС, в которой напряженность магнитного поля, вызванного токами I1, I2 и I3, равна нулю.	

Ответ: искомая точка O находится между точками l_1 и l_2 на расстоянии 3,3 см от точки A.

11.15. Ток I = 20 А идет по длинному проводнику, согнутому под прямым углом. Найти напряженность H магнитного поля в точке, лежащей на биссектрисе этого угла и отстоящей от вершины угла на расстоянии a = 10 см.

дано
I = 20 A
a = 10 cM

Решение

H=?

11.17. Найти напряженность H магнитного поля на оси кругового контура на расстоянии a=3см от его плоскости. Радиус контура R=4 см, ток в контуре I=2 A.

Дано	Решение
a = 3cM $R = 4 cM$ $I = 2 A$ $H = ?$	$I = \begin{bmatrix} \vec{A} & d\vec{B} \\ \vec{A} & \vec{A} & d\vec{B} \\ \vec{A} & \vec{A} & d\vec{B} \end{bmatrix}$

11.19. Два круговых витка радиусом R=4 см каждый расположены в параллельных плоскостях на расстоянии d=10 см друг от друга. По виткам текут токи $I_1=I_2=2$ А. Найти напряженность H магнитного поля на оси витков в точке, находящейся на равном расстоянии от них. Задачу решить, когда: а) токи в витках текут в одном направлении; б) токи в витках текут в противоположных направлениях.

Дано	Решение
$R = 4 cM$ $d = 10 cM$ $I_1 = I_2 = 2 A$ $r = d/2 = 5 cM$	I_1 R $2\vec{H}_0^{I_2}$ R
H=?	

11.20. Два круговых витка радиусом R=4 см каждый расположены в параллельных плоскостях на расстоянии d=5 см друг от друга. По виткам текут токи $I_1=I_2=4$ А. Найти напряженность H магнитного поля в центре одного из витков. Задачу решить, когда: а) токи в витках текут в одном направлении; б) токи в витках текут в противоположных направлениях.

Дано	Решение
$R = 4 \text{ cm}$ $d = 5 \text{ cm}$ $I_1 = I_2 = 4 \text{ A}$ $H = ?$	I_{1} R $C\widetilde{H}_{2}$ \widetilde{H}_{1} d R

11.22. Два круговых витка расположены в двух взаимно перпендикулярных плоскостях так, что центры этих витков совпадают. Радиус каждого витка $R=2\,\mathrm{cm}$, токи в витках $I_1^{}=I_2=5\,\mathrm{A}$. Найти напряженность H магнитного поля в центре этих витков.

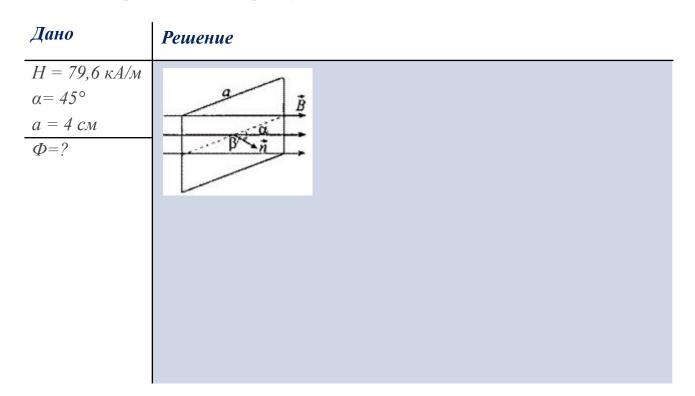
центре этих витков.	
Дано	Решение
$R = 2 \text{ cm}$ $I_1 = I_2 = 5 \text{ A}$ $H = ?$	

11.23. Из проволоки длиной l=1 м сделана квадратная рамка. По рамке течет ток I=10 А. Найти напряженность H магнитного поля в центре рамки.

Дано	Решение
$l = 1 \text{ M}$ $I = 10 \text{ A}$ $a_1 = a_2 = a_3 =$ $= a_4 = l/4$ $H = ?$	

11.26. Бесконечно длинный провод образует круговой виток, касательный к проводу. По проводу идет ток I=5 А. Найти радиус R витка, если напряженность магнитного поля в центре витка H=41 А/м.

Дано	Решение
I = 5 A $H = 41 A/M$ $R = ?$	Temenue ↑


11.30. Требуется получить напряженность магнитного поля H=1 кA/м в соленоиде длиной I=20 см и диаметром D=5 см. Найти число ампер-витков. IN, необходимое для этого соленоида, и разность потенциалов U, которую надо приложить к концам обмотки из медной проволоки диаметром d=0,5 мм. Считать поле соленоида однородным.

Дано	Решение
$H = 1 \kappa A/M$	
l=20 cm	
$D = 5$ c_M	
d=0,5 мм	
IN=?	
U=?	

11.34. Конденсатор емкостью C=10 мкФ периодически заряжается от батареи с э.д.с. = 100 В и разряжается через катушку в форме кольца диаметром D=20 см, причем плоскость кольца совпадает с плоскостью магнитного меридиана. Катушка имеет N=32 витка. Помещенная в центре катушки горизонтальная магнитная стрелка отклоняется на угол $\alpha=45^{\circ}$. Переключение конденсатора происходит с частотой n=100 с⁻¹. 'Найти из данных этого опыта горизонтальную составляющую $H_{_{\Gamma}}$ напряженности магнитного поля Земли.

Дано	Решение
Дано $C = 10 \text{ мк}\Phi$ $9.\partial.c. = 100 \text{ B}$ $D = 20 \text{ cm}$ $N = 32$ $\alpha = 45^{\circ}$ $n = 100 \text{ c}^{-1}$ $H_z = ?$	Решение ——————————————————————————————————

11.36. В однородном магнитном поле напряженностью H=79,6 кА/м помешена квадратная рамка, плоскость которой составляет с направлением магнитного поля угол $\alpha=45^\circ$. Сторона рамки a=4 см. Найти магнитный поток Φ , пронизывающий рамку.

11.42. Длина железного сердечника тороида $l_1 = 2,5$ м, длина воздушного зазора $l_1 = 2,5$ м. Число витков в обмотке тороида N = 1000. При токе I = 20 А индукция магнитного поля в воздушном зазоре B = 1,6 Тл. Найти магнитную проницаемость μ железного сердечника при этих условиях. (Зависимость B от H для железа неизвестна.)

Дано	Решение
$l_{I} = 2,5M$ $l_{I} = 2,5M$ $N = 1000$ $I = 20 A$ $B = 1,6 T\pi$	\vec{R}_1 \vec{B}_{2n} \vec{B}_2 \vec{B}_{1n} \vec{B}_{1n}
μ=?	

11.45. Длина железного сердечника тороида $I_1=1$ м, длина воздушного зазора $I_{2r}=3$ мм. Число витков в обмотке тороида N=2000. Найти напряженность магнитного поля H_2 в воздушном зазоре при токе I=1 A в обмотке тороида.

Дано Решение $l_{I} = 1 \text{ M}$ $l_{2e} = 3 \text{ MM}$ N = 2000B, Tn1,5 I = 1 A $H_{2=?}$ 0,5 H, 10³ A/M 5 6 7 8

11.54. Между полюсами электромагнита требуется создать магнитное поле с индукцией B=1,4 Тл. Длина железного сердечника $l_1=40$ см, длина межполюсного пространства $l_2=1$ см, диаметр сердечника D=5 см. Какую э. д.с. E надо взять для питания обмотки электромагнита, чтобы получить требуемое магнитное поле, используя медную проволоку площадью поперечного сечения S=1 мм²? Какая будет при этом наименьшая толщина E=1 ммотки, если считать, что предельно допускаемая плотность тока E=1 мм²?